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Canada
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Abstract. We propose and study a metropolis Monte Carlo algorithm for the simulation of
weighted lattice animals inZd in the canonical ensemble (with a fixed number of edges). We
examine the implementation and performance of the algorithm. Data obtained by sampling
uniformly weighted animals, and animals weighted as critical-percolation clusters, are reported
and analysed. In particular, we estimate autocorrelation times and dynamical exponents to study
the efficiency of the algorithm, and estimate the metric and branch exponents of lattice animals
in two and three dimensions.

1. Introduction

Connected subgraphs of a lattice are called lattice animals, a name which dates back to
the 1950s and studies of cell-growth problems (see for example [1]). The finite clusters
in lattice percolation are (weighted) lattice animals, and lattice animals are also used as
a model for branched polymers [2]. In this paper we study lattice animals in the square
and cubic lattices,Zd , for d = 2, 3. In particular, we will be interested in the efficient
generation of lattice animals by a metropolis Monte Carlo algorithm.

Two animals are identical if they can be superimposed by a translation. Theorder of
an animal is the number of distinct lattice sites occupied by the animal, and thesize of
an animal is the number of edges it contains. The number of distinct animals of a given
order, or of a given size, is the most fundamental quantity in the study of animals. Letan
be the number of animals withn edges, then inZ2, a1 = 2, a2 = 6, a3 = 14, and so on.
These animals areweak embeddingsor subgraphs of the lattice, and they are also called
edge animalsor bond animalscounted by their size§. There is a close connection between
percolation and animals counted by their size [3–5].

There is a large body of literature devoted to lattice animals. The focus in the vast
majority of studies is the calculation or approximation of critical exponents. In particular,
the sequencean is expected to have the following asymptotic behaviour:

an ∼ n−θλn (1.1)

whereθ is a critical exponent called theentropic exponentand λ is the growth constant
(which determines the exponential rate at which the number of animalsan grows).
Equation (1.1) is the result of the limit limn→∞(logan)/n = logλ, which exists [6] (see

† E mail address: rensburg@mathstat.yorku.ca
‡ E mail address: madras@mathstat.yorku.ca
§ We usen to indicate the number of edges, andv to indicate the number of vertices in this manuscript, in contrast
to the usual notation.
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also the work of Klein [7]); the power-law correction to the exponential factor is strongly
supported by the numerical simulation of animals [8]. Themetric exponentof animals has
also been studied in much detail. This exponent defines a length scale for animals: IfRn is
the root of the mean-square radius of gyration of animals withn edges, then it is expected
that

Rn ∼ nν. (1.2)

Critical dimensions and mean-field values of exponents were obtained by anε-expansion
study of the critical behaviour of lattice animals in good andθ -solvents [2]. The critical
dimension of animals in a good solvent is eight, and above this the mean field exponents
of animals are encountered: these areθ = 5

2 andν = 1
4 (see also [4, 9–12]). In aθ -solvent

the critical dimension is six. Incidentally, the critical dimension of percolation is also six,
and we shall later see that there is an intimate connection between percolation and animals
in a θ -solvent [13–15]. The dimensional reduction of lattice animals ind dimensions to an
Ising model in an imaginary magnetic field ind − 2 dimensions has produced some ‘exact
values’ forθ andν: In two dimensions,θ = 1, and in three dimensions,θ = 3

2 andν = 1
2

[16].
The limiting free energy and phase diagram of a model of interacting lattice animals have

also been studied extensively. The existence of a limiting free energy in various models
of site animals, and studies describing some of the properties of the free energy can be
found in [17–20]. In all these models the free energy is a function of a cycle fugacity [21].
Increasing the cycle fugacity in these models gives animals rich in cycles more weight, and
at a critical value of the fugacity the model is thought to undergo a ‘collapse transition’ to
compact animals. It has also been established that a non-analyticity exists in the free energy
of a directed version of this model, presumably corresponding to a collapse transition [22].
For weakly embedded animals (counted by vertices) the limiting free energy as a function
of solvent contacts (or perimeter of the animal) has also been shown to exist [23]. A related
model of weakly embedded animals with a cycle fugacity has been studied in [24], where
several properties of the free energy have been proven (see also [13]).

Numerical work on animals falls into two broad categories: series enumeration and
Monte Carlo simulations. Counting animals for series analysis has its origin in the study
of percolation [25–28]. Later series enumerations for applications to models of animals
include those in [8, 17, 29–37]. The first simulations of lattice animals were in studies of
percolation. These include cluster growth methods [38–40] where a vertex is selected and
the animal (weighted like a percolation cluster) is grown from this ‘seed’. A second set of
Monte Carlo simulations is of the metropolis type: a random change is made to a percolation
cluster and the resulting cluster is proposed as an updated version of the old cluster. It is
accepted (or rejected) by throwing a random number, metropolis style. This is a stochastic
process which samples along a Markov chain in the state space of animals (weighted as
percolation clusters in the cases where percolation is studied). Examples of such algorithms
can be found in the work of Stauffer [41], Herrmann [42], and Peterset al [31] in the 1970s
and followed by the work of Stratychuk and Soteros [43]. The new algorithm proposed
in this paper will be of the dynamic metropolis Monte Carlo type, and it will resemble a
non-local algorithm for lattice trees introduced in [44, 45]. Other Monte Carlo algorithms
for models of branched polymers also focussed on trees (rather than animals); these include
the work of Redner [46], Seitz and Klein [47] and Meirovitch [48]. For a detailed account
and more references, see [44].



Monte Carlo simulation of lattice animals 8037

Figure 1. An animal in the square lattice with 15 vertices, 16 edges,
two cycles, five contacts and perimeter 18. The contacts are indicated by
broken lines, the perimeter edges are indicated by dotted lines and edges
are indicated by full lines.

2. Lattice animals

In this section we review what is known about the phase diagram of animals with cycle
and contact fugacities. Letan(c, k) be the number of animals withn edges,c cycles and
k contacts. In addition to these, we also identify perimeter edges (or ‘solvent contacts’)
as those edges of the lattice which have exactly one endpoint in the animal. Lets be the
number of perimeter edges in an animal. These are all illustrated in figure 1.

Each vertex in an animal is incident with at least one edge in the animal, and then
with a number of other contact and perimeter edges. Since there arev vertices, each with
coordination number 2d, we observe that [13]:

1= v − n+ c
2dv = 2n+ 2k + s. (2.1)

In other words, by specifying three (one of which iss or k) of the five numbers{c, k, v, n, s},
we can compute the other two. In the edge-cycle-contact model, which we will be concerned
with in this paper, the number of vertices and perimeter edges are also determined for each
animal. The partition function of a model of animals with fugacities given to the numbers
of cycles and contacts is

Zn(βc, βk) =
∑
c,k

an(c, k)e
βcc+βkk. (2.2)

The values ofβc andβk in Zn(βc, βk) can be chosen such that the animals are weighted as
percolation clusters at a probabilityp that each edge is open. We see this by computing
the probabilityPn(p) that the cluster at the origin hasn edges [49] (see also [13, 14]):

Pn(p) =
∑
c,k

v an(c, k)p
n(1− p)s+k. (2.3)

Using the relations in (2.1) to eliminatev ands in the above we obtain

Pn(p) = pn(1− p)2d+2(d−1)n
∑
c,k

(n+ 1− c)an(c, k)(1− p)−2dc(1− p)−k. (2.4)

Comparing this with (2.2) one notes that this is an unnormalized average ofv with p related
to βc andβk. In fact, for each value ofp one can computeβc andβk from

βc = −2d log(1− p)
βk = − log(1− p). (2.5)
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These relations define a half-line in the(βk, βc)-plane along which animals are weighted as
percolation clusters at edge probabilityp. The free energyper edge of this model is defined
as

Fn(βc, βk) = 1

n
logZn(βc, βk). (2.6)

The existence of a limiting free energy (in the limitn → ∞) was proven in a variety of
models of trees and animals [7, 24, 50, 51]. Since our model has not been studied directly
before, we prove here that there exists a limiting free energy, and that it is convex in both
its arguments.

Theorem 1.There exists a functionF(βc, βk), convex in both its arguments, such that

F(βc, βk) = lim
n→∞Fn(βc, βk)

for all βc ∈ [−∞,∞) and βk ∈ [−∞,∞). Moreover, F(βc, βk) is finite for all
βc ∈ [−∞,∞) andβk ∈ [−∞,∞).

Proof. Let α1 andα2 be two animals and supposeαi hasni edges,ci cycles andki contacts.
The top and bottom vertices ofαi are found by a lexicographic ordering of the vertices
by their coordinates. Translateα2 so that its bottom vertex has first coordinate one bigger
than the first coordinate of the top vertex ofα1, and all other coordinates equal. Define
c = c1+ c2 andk = k1+ k2. We can concatenateα1 andα2 by adding a new edge between
the top vertex ofα1 and the bottom vertex ofα2, and we obtain a new animal withc cycles,
k contacts andn1 + n2 + 1 edges. Since this animal is uniquely determined byα1 andα2,
we can letc1 andk1 vary over all values between 0 andc andk respectively, withc2 andk2

chosen to keepc andk constant; this gives the generalized supermultiplicative inequality:∑
c1,k1

an1(c1, k1)an2(c − c1, k − k1) 6 an1+n2+1(c, k).

Multiply this equation by eβcc+βkk and sum overc andk. This gives, by (2.2):

Zn1(βc, βk)Zn2(βc, βk) 6 Zn1+n2+1(βc, βk)

and Zn−1(βc, βk) is a supermultiplicative function. ConsequentlyFn−1(βc, βk) is a
superadditive function, and the limit in question exists [52]. To see that it is finite, note that

Zn(βc, βk) 6 ane2(d−1)nβ∗c e2dnβ∗k

since the maximum number of cycles in an animal is at most 2(d − 1)n, and the maximum
number of contacts is at most 2dn, and whereβ∗c = max{βc, 0} andβ∗k = max{βk, 0}.

Convexity of the free energy is shown by standard applications of the Cauchy–Schwartz
inequality. �

By theorem 1,F(βc, βk) is continuous and differentiable almost everywhere [53]. There
is at least one point in the(βk, βc)-plane where we know thatF(βc, βk) is non-analytic:
Edge percolation is a half-line in this plane, parametrized byp and given by equations (2.5).
SinceP∞(p), the percolation probability, is non-analytic atpc [49], we conclude that the
point (−2d log(1−pc),− log(1−pc)) is a non-analytic point ofF(βc, βk). The rest of the
phase diagram ofF(βc, βk) is conjectured and described in [13, 15] (see figure 2). There is a
line of θ -transitions in this diagram which separates a phase of expanded animals (or animals
in a good solvent) from collapsed animals (or animals in a poor solvent). Theθ -transitions
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Figure 2. The conjectured phase diagram for animals in the contact-cycle ensemble. The
percolation point (marked with aP ) is known to be a non-analyticity in the free energy. Two
lines of distinctθ -transitions (θ and θ ′) are thought to meet at the percolation point (these are
lines of tricritical points). This makes the percolation point a multicritical point. Uniformly
weighted lattice trees are atβc = −∞ andβk = 0 in this diagram, and they undergo a collapse
transition asβk approaches a critical value. Percolation clusters are found along the broken line
marked percolation which starts at the origin. In two dimensions,pc = 1

2 , and a numerical
estimate of the critical value ofβk in lattice trees implies that (at least in two dimensions), the
line θ may be a straight line.

should include the critical percolation point, since all other points on the percolation line
are believed to be analytic†. There is a conjecture that the percolation point separates the
line of θ -transitions into two universality classes [13, 15, 45, 54, 55], each characterized by
its set of tricritical exponents (theθ -transition is believed to be tricritical). In the case that
βc is small or negative, theθ -transition is believed to be into a collapsed phase poor in
cycles, while for largeβc, the collapse is to a phase rich in cycles. Theθ -transition for
collapse into a cycle-rich phase is suggested to be in the universality class of the Ising
model [54, 55], with critical exponents determined by that critical point‡. It is not obvious
that theseθ -phases are indeed different phases (for example, they have the same metric
exponent). In this picture, the percolation point is a multicritical point where two lines
of distinct tricritical points meet, and associated with it is a set of multicritical exponents
(which are the percolation exponents). All of the above is conjecture, with the exception
that the location of the percolation point is known in two dimensions, and thatF(βc, βk) is

† F(βc, βk) is conjectured to be non-analytic atθ -points along any line in the phase diagram which intersects the
line of θ -transitions. It is believed that there are no other non-analyticities along the percolation line (except at the
critical percolation point; the percolation probability is known to be continuous along the percolation line, except
for possibly at the critical point in three and more dimensions) [49]. Thus, we expect that the critical percolation
point is at the intersection of the percolation line and the line ofθ -transitions.
‡ We reserve judgement on collapse into a cycle-poor phase; it is possible that this is also in the Ising universality
class, but simulations for lattice trees [45, 54] suggests a value of the crossover exponentφ which is slightly
smaller than predicted by the Ising universality class [56] (see also [55]).



8040 E J Janse van Rensburg and N Madras

non-analytic at this point.
In this paper we present an algorithm for studying the above problem. In particular, we

test the algorithm by simulating animals in the expanded phase at(0, 0) and at the critical
percolation point in two and three dimensions. We focus in particular on the numerical
efficiency of the algorithm, and on the scaling behaviour of animals as observed through
various properties that we can measure by Monte Carlo. The numerical efficiency will be
tested by measuring autocorrelation times on some properties associated with the animals,
and we will discuss these in section 4. The properties of animals that we measure includes
the following.

2.1. Mean square radius of gyration

The algorithm will simulate animals with a constant number of edges. The number of
vertices will change as the cyclomatic index of the animals changes during the simulation.
The size (number of edges) of the animal will therefore be taken as a measure of the ‘mass’
of the animal. Thus, let every edgeei , i = 1 . . . n, be taken to have unit mass, concentrated
at its midpoint. The mean square-radius of gyration,R2

n, of an animal withn edges is
defined by

R2
n =

1

n

n∑
i=1

(r(ei)− rc)
2 (2.7)

whererc is the centre-of-mass of the animal andr(ei) the position vector of the midpoint
of the ith edge. The mean-square radius of gyration,〈R2

n〉, is the average ofR2
n over all

animals. Naturally,R2
n 6 n2, and 〈R2

n〉 > Cn2/d in d dimensions, whereC is a constant.
Thus, we expect that the mean-square radius of gyration scales as

〈R2
n〉 ∼ n2ν (2.8)

whereν is the metric exponent, and 1/d 6 ν 6 1.
The metric exponent takes on different values in the phases identified in figure 2. In

particular, in the collapsed phase we expect thatν = 1/d, whereas in the expanded phase
it takes on the universal branched polymer value. At the percolation point one expects its
value to be that of percolation, and it has yet other values on theθ andθ ′ lines.

2.2. Mean span

Let xi(vj ) be theith Cartesian coordinate of thej th vertex of the animal. The span of an
animal withn edges andm vertices{vi}mi=1 is defined by

Sn = 1

d

d∑
k=1

max
16i,j6m

|xk(vi)− xk(vj )|. (2.9)

If we accept that there is only one length scale in this model, then we conclude from
equation (2.8) that the mean span behaves as

〈Sn〉 ∼ nν. (2.10)

Equations (2.8) and (2.10) provide us with two different methods for estimatingν. Since
corrections to scaling tends to obscure the true value ofν, a comparison between values
obtained from these two quantities are useful in assessing the accuracy of an estimate ofν.
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2.3. Mean branch size

Let ei be a cut edge of an animalα. Thenα−ei is a disconnected graph of two components,
calledsub-animals. We call the smaller sub-animal abranchand letbn be its order. Then
surelybn 6 n. The expected value ofbn is defined by taking its average over all branches
in all animals of sizen. We define the exponentε by

〈bn〉 ∼ nε. (2.11)

〈bn〉 can be estimated by uniformly choosing a cut edge and considering the resulting
branches in a uniform sample of animals of sizen. We can simplify this by choosing an
edge uniformly in each animal and, if a selected edge is not a cut edge, by defining the
resulting branch to have size zero. If the probability that a cut edge is selected isqn in
animals of sizen, then the expected number of vertices in a branch will be

〈Bn〉 ∼ qnbn + (1− qn)0∼ qnnε. (2.12)

We do not expectqn to approach zero asn→∞†, even on the lines ofθ -transitions, and
so we conclude that

〈Bn〉 ∼ nε. (2.13)

The fact that animals are believed to belong to the same universality class as trees indicates
that the value ofε should be given by the branch exponent of trees. The number of edges in
the longest path in a lattice tree,ρn, is expected to scale as〈ρn〉 ∼ nρ . A heuristic argument
in [44] shows that the mean branch size of trees also scales with the exponentρ. Thus, we
conclude thatε = ρ in (2.13). The mean-field value ofρ is 1

2 [44], and numerical results
indicate that it is larger than12 in dimensions lower than the critical dimension. Similarly
to the metric exponent, we expectε to assume different values in the different phases in
figure 2.

2.4. Mean number of contacts

The mean number of contacts,〈kn〉, is the contact energy of the animal, since it is the
derivative of the free energy toβk. A pattern theorem for animals (see footnote below)
implies that〈kn〉 > K ′n, whereK ′ is a constant. On the other hand, since each vertex has
maximum degree at most 2d, we also conclude that〈kn〉 6 2dn. Consequently, we expect

〈kn〉 ≈ Kn (2.14)

whereK is a constant. Since the free-energy density in animals seems to undergo a
continuous transition asβk increases through its critical value, there is a non-analyticity
in K at the collapse transition.

2.5. Mean number of cycles

The same arguments (made for the mean number of contacts) apply here. Thus, we expect
that

〈cn〉 ≈ Cn (2.15)

† Neither doesqn approach 1 asn → ∞. This is a consequence of a ‘pattern theorem’ for animals (this result
is due to Madras, unpublished), which implies that there will be a density of cycles of length 4 in the animal.
In other words, the probability 1− qn is not expected to approach 0 asn→∞. On the other hand, (expanded)
animals are also expected to scale as trees, which suggests that there is a non-zero density of cut edges.
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where〈cn〉 is the mean number of cycles andC is a constant. Observe that the mean number
of vertices in an animal is given byn−〈cn〉+1, so that it is equivalent to the mean number
of cycles (by equation (2.1)).

2.6. Mean perimeter

The pattern theorem for animals indicates that for uniformly weighted animals, the number
of perimeter sites will grow proportionally to the number of edges. We expect this to be
true for all animals in the expanded phase in figure 2. Thus

〈sn〉 ≈ An (2.16)

for some constantA.
We define thetotal perimeterof a lattice animal to be sum of its contacts and perimeter

edges. There is a lengthy history associated with the total perimeter of percolation clusters
[28]. Let tn be the total perimeter of a percolation cluster. Then close to the critical valuepc

of the edge probabilityp, tn is expected to scale astn = ((1−p)/p)n+ nσf ((p−pc)n
σ ),

whereσ is a ‘crossover’ exponent which describes the crossover to critical behaviour as
p approachespc. The differencet ′n = tn − ((1− p)/p)n is called theexcess perimeter†.
The excess perimeter plays the role of a surface area in percolation, and the approach to
criticality is often described in terms of the condensation of a liquid to droplets atp = pc

into drops forp > pc. Forp > pc the excess perimeter scales as the surface area of a liquid
sphere of volumen: t ′n ∝ n1−1/d in d dimensions. This behaviour breaks down atpc, and
scaling arguments (see [28] for details) show thatt ′n ∝ nσ , andσ − 1 may be interpreted
as the negative inverse of a ‘fractal dimension’ of the cluster atp = pc. For p < pc this
picture does not apply, instead, the excess perimeter will scale proportionally ton, and we
cannot interpret this as the contribution of a surface area (of a drop) to the perimeter.

The arguments above have some interesting implications for us: our expanded animals
are in the same phase in figure 2 as subcritical percolation clusters, and we can expect that
the perimeter will scale as in (2.16) above. For critical percolation clusters, we obtain the
additional surface correction, so we postulate that

〈sn〉 ≈ An+ Bnσ (2.17)

at the critical percolation point. Moreover, if we consider the total perimeter of our clusters
by considering instead〈tn〉 = 〈sn + kn〉, then at the percolation point we should obtain
〈sn + kn〉/n → [(1− pc)/pc] as n → ∞, and we should be able to compute the critical
value of the percolation probability from our data.

2.7. The mean number of edges per cycle

Suppose that an edgee is selected uniformly from the animal. LetCn be the size of the
smallest cycle containinge (say that a cycle of size zero is found if a cut edge is selected).
Since expanded animals scale like trees, we expecte either to be not in a cycle, or to be
in a small cycle; thus we expect that〈Cn〉 → constant asn→∞. This argument does not
apply to critical percolation clusters.

† The term((1−p)/p)n is a ‘bulk term’, describing the contributions from the bulk of the cluster. It is obtained
by defining the generating function of percolation clusters at edge probabilityp: Zn(p) =

∑
c,k an(c, k)p

nqs+k

whereq = 1− p, following (2.3). Direct computation shows that〈sn + kn〉 = q
p
n + q d

dq logZn(p). The usual
finite size scaling assumptionZn(p) ∼ g((p − pc)n

σ ), whereσ is a crossover exponent describing the crossover
to critical behaviour andg(x) is a universal scaling function, gives then andp dependence oftn. The exponent
σ is estimated to have a value close to 0.4 in both two and three dimensions [28]; we will estimate its value later
from our numerical data.
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2.8. The fraction of vertices of degreei

A pattern theorem for animals implies that vertices of any given degree will occur with
positive density in the limitn → ∞. Let δi be the density of vertices of degreei. The
mean valence isV =∑ iδi . An observable closely related toV andδi has been studied in
[29, 30] for percolation clusters.

3. Metropolis Monte Carlo of animals

There are a large number of numerical studies of animals and percolation clusters in the
physics and mathematics literature. The vast majority of these studies are exact enumeration
of animals or percolation clusters with a given number of edges or vertices (sites) [57–
59, 8, 21].

Monte Carlo studies of percolation were already done in the early 1960s [60]. Dean and
Bird [61] used a Monte Carlo algorithm to compute extensive tables of critical probabilities
for percolation. Their algorithm proceeds by selecting an unoccupied site in a finite lattice
uniformly. Turning the site on changes the distribution of clusters (animals) in the lattice.
The distribution is recorded and the process is repeated. Leath’s algorithm [38, 39] grows
a weighted percolation cluster by selecting a perimeter site of the cluster uniformly and
turning it on. The algorithm of Redner [46] also grows animals by choosing an active site
in the animal and ‘growing’ a new set of branches at this site. These algorithms can be
thought of as ‘static’ Monte Carlo algorithms.

In contrast to these static algorithms, dynamic Monte Carlo algorithms sample along
a Markov chain in the state space of (weighted) animals. Stoll and Domb [62] used
Monte Carlo simulation of the Ising model with a one-spin flip to accumulate statistics on
percolation clusters. Stauffer’s algorithm [5] is a dynamical Monte Carlo algorithm which
generates clusters with a fixed number of vertices. The elementary move is the exchange of
a cluster site with a perimeter site (both selected uniformly). The newly proposed cluster is
accepted metropolis style with probability(1− p)1t wherep is the probability that a site
is on, and1t is the change in the perimeter length of the animal [28, 41]. This algorithm
is particularly important in the development of animal simulations. By takingp = 0, one
can simulate (uniformly weighted) animals (these are at the origin of the graph in figure 2),
and properties of animals and percolation clusters can in principle be efficiently simulated
for any value ofp. In fact, it is apparent that by adapting the transition probability, one can
weight animals with respect to cycles, or contacts, or any intrinsic property; andp can also
be taken negative. In that case the algorithm will sample along a Markov chain of animals
weighted to have few cycles and few contacts (this is noted by continuing the percolation
line in figure 2 by takingp negative in equations (2.5)).

All the algorithms described above are defined to simulate site-percolation or site-
animals. In some of these (Dean and Bird, Leath, and Stauffer’s algorithms), it is not
a difficult problem to adapt the algorithm to similate edge animals and edge or bond
percolation. In addition, there is an efficient algorithm for edge animals in the literature
[63]. This algorithm does not preserve the size of the animals, and incorporates a global
move of the type used for trees in [44]. The invariant limit distribution is

1

Z(β1, β2, β3)
eβ1s+β2k+β3v (3.1)

where theβi are weights conjugate to the perimeters, the contact numberk and the number
of verticesv in the animals. Approximations of expected values of properties of animals
can be computed with respect to this distribution.
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3.1. A non-local algorithm for lattice animals

In this section we explain a new algorithm for lattice animals with a fixed number of edges.
The algorithm will have the non-local character of the algorithm for trees in [44], and it
will sample animals weighted with a cycle and a contact fugacity (in other words, it will
sample animals from the phase diagram in figure 2 for finite values ofn). We are primarily
interested in the numerical behaviour of the algorithm, and so we will simulate animals only
uniformly (at the origin in figure 2), or weighted like percolation clusters (at the percolation
point in figure 2).

The metropolis Monte Carlo algorithm for animals below will sample along a Markov
chain in the state space of animals withn edges. It will attempt to find the next state in the
chain by means of an elementary move on the current state. To simplify matters, we first
discuss sampling along a symmetric chain, converging to the uniform distribution on the
state space. Suppose that we have an animalα1 with n edges,k contacts,v vertices andc
cycles. The algorithm proceeds as follows.

Algorithm S.
(1) Pick an edgee uniformly in the animal.
(2a) If e is a leaf: deletee and select a vertexV uniformly in α1− e (and do not select

the isolated point). Choose a nearest neighbourU of V uniformly. If UV is an edge in
α1 − e, then we reject this attempt, countα1 as the next state and start again at step 1. If
UV is a perimeter edge, then we movee there, creating a new animalα2 = α1 − e + UV
which we propose as the next state. IfUV is a contact, then we chooseα2 = α1− e+UV
with probability 1

2 as the next proposed state, otherwise we reject the attempt and return to
step 1 (after countingα1 as the next state).

(2b) If e is an edge in a cycle: deletee and select a vertexV uniformly in α1 − e.
Choose a nearest neighbourU of V uniformly. If UV is an edge inα1 − e, then reject
this attempt, and countα1 as the next state and return to step 1. IfUV is a contact or a
perimeter edge, then acceptα2 = α1− e + UV as the next proposed state.

(2c) (Tree-move)otherwisee is a cut edge andα1− e consists of two sub-animals: Let
A1 be the smaller of these sub-animals. We attempt to reattachA1 in order to create a
new animal. RotateA1 to A′1 by operating on it with a randomly chosen element of the
octahedral group. Pick two vertices at random, one on each sub-animal. TranslateA′1 so
that the two chosen vertices are nearest neighbours (in one of 2d possible orientations). If
there are intersections between the two sub-animals, then we reject this attempt (and count
α1 as the next state and return to step 1). Otherwise we reconnect the animal by adding an
edge between the selected vertices to createα2.

(3) Acceptα2 as the next state in the Markov chain and start again at step 1.
It is not immediately obvious that this algorithm is symmetric. There are several possible

situations. Suppose thatα1 andα2 are distinct states following one another in the Markov
chain. Then we obtainα2 from α1 by exactly one of the following: (1) a tree move, (2)
replacing a leaf by another leaf, (3) removing a leaf and creating a cycle (by turning a
contact into an edge), (4) removing an edge from a cycle and creating a leaf, (5) removing
an edge from a cycle and create another cycle by changing a contact into an edge. We can
now explicitly compute transition probabilities for each of these cases.

(1) Suppose that the two sub-animals created in the tree move havev−k andk vertices.
Then if the octahedral group hasoh elements,

P(α1→ α2) = 1

2dnk(v − k)oh (3.2)
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since the edge is selected with probability 1/n, the two vertices are selected on the sub-
animals in one ofk(v− k) ways, and the smaller is translated for reconnection in one of 2d

ways, and rotated in one ofoh ways. The probability for obtainingα1 from α2 by reversing
every operation here is also given by (3.2).

(2) The probability of obtainingα2 from α1 is

P(α1→ α2) = 1

2dn(v − 1)
(3.3)

since the edge is selected with probability 1/n, and removing it leaves(v−1) vertices from
which we select a new edge in one of 2d(v − 1) ways. Selecting a leaf inα2 to createα1

follows exactly the same probabilities. Hence, this move is symmetric.
(3, 4) Suppose thatα2 is obtained fromα1 by selecting a leafe and putting it back to

create a cycle. The probability of selecting the leaf is 1/n, and the probability of selecting
a contact inα1− e is 2/2d(v − 1), since their are(v − 1) vertices inα− e and the contact
can be selected from either of its endpoints. In addition, this elementary move is accepted
with probability 1

2, so that the transition probability is

P(α1→ α2) = 1

2dn(v − 1)
. (3.4)

α1 can be obtained fromα2 by selecting the edge out of the cycle, and putting it back as
a leaf. The edge is selected with probability 1/n, and sinceα2 has (v − 1) vertices, the
probability of selecting the perimeter edge to put down the leaf is 1/2d(v−1). Consequently,
the probability of changingα2 back intoα1 is given by (3.4), and these cases are also
symmetric.

(5) In this case,α2 is obtained by moving an edge from a cycle inα1 to create a
new cycle. Note thatα1 andα2 have the same number of verticesv. Thus, the transition
probability is

P(α1→ α2) = 2

2dnv
(3.5)

since each edge can be selected inn ways, and a contact inα1− e is selected in two ways
from 2dv. The transition probability fromα2 to α1 is calculated in exactly the same way,
also giving (3.5). Thus, this move is also symmetric.

Consequently, algorithm S is symmetric and aperiodic. We note that it is irreducible
since any animal can be turned into a straight line by selecting edges in cycles and leaves
and apending them (as leaves) onto the top vertex (lexicographic most vertex) of the animal
in, for example, thex-direction. By the fundamental theorem of Markov chains, we see
that the invariant limit distribution of algorithm S is the uniform distribution in the space
of lattice animals withn edges in the hypercubic lattice [64].

Our aim is to sample animals weighted as in the summand of equation (2.2). To this
end, we modify algorithm S as follows by introducing two parametersβc andβk and by
replacing step 3 by step 3′ to define algorithm R.

Algorithm R.
Steps 1 and 2 are identical to steps 1 and 2 of algorithm S.
(3′) Suppose thatα2 hasc′ cycles andk′ contacts. Let1c = c′ − c and1k = k′ − k,

whereα1 hasc cycles andk contacts. Acceptα2 as the next state in the Markov chain with
probability

min{1, eβc1c+βk1k}. (3.6)
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If α2 is rejected thenα1 is the next state in the Markov chain.
The fundamental theorem for Markov chains then implies that the invariant limit

distribution of algorithm R is

5(α) = eβcc(α)+βkk(α)

Zn(βc, βk)
(3.7)

whereZn(βc, βk) is a normalizing constant given by equation (2.2) [64].

3.2. Implementation of algorithm R

Algorithm R was coded in C with data structures carefully designed to achieve an efficient
implementation. Suppose that the animal hasv vertices ind dimensions. Implementation
of the algorithm requires the following operations in the animal: (1) detection of cycles and
sub-animals, (2) detection of self-intersections and (3) counting contacts and cycles. The
vertices of the animal were stored in an arrayV (v, 3d). The firstd addresses in theith row
of V keep the coordinates of theith vertex in the animal. The remaining 2d addresses are
pointers which point to vertices adjacent to vertexi in the animal. The degree of theith
vertex is given by the number of pointers in these addresses (some of these will be empty
if the degree of vertexi is less than 2d).

We detected self-intersections in the animal, and counted the number of contacts, by
using hash coding (see [65]). Vertices of the current animal are put into a hash table
HASH(10∗ n, d + 1) using a hash function and linear probing (see [66] for details). The
vertices are kept in the hash table for most of the simulation, and stored by writing
coordinates into the firstd positions, and labels into the(d + 1)th position. An array
SUB(2, bv/2c, d + 1) was used to store the coordinates of vertices in sub-animals in the
case that a tree move is proposed. Vertices are read intoSUB(, , ) as they are encountered
in a double-breadth first search† for the smaller sub-animal. The firstd positions in an
address inSUB(, , ) will be occupied by the coordinates of vertices in the sub-animal, and
the (d + 1)th position will be for its label. Using these data structures, the implementation
of the algorithm was as follows:

(1) An edgee can be selected uniformly fromV (v, 3d) by selecting uniformly two
random integers in [1, n] and [1, 2d] respectively. The first selects a vertex uniformly, and
the second a pointer to another vertex. If the pointer is empty, then we reject the attempt
and try again by selecting two new random integers.

(2) Determine whethere is a leaf by checking the degrees of its endpoints. Ife is a
leaf then step (2a) is executed next. Otherwise we must decide ife is in a cycle. This
is done efficiently by a breadth-first search in the animal, starting at an endpoint ofe (see
for example [67], and see [44] for details). An advantage of a breadth-first search (over a
depth-first search) is that it will detect a smallest cycle containinge efficiently. At the same
time, we can collect data on the size of smallest cycles in the animal. Ife is in a cycle, then
step (2b) is executed next, otherwisee is a cut edge of the animal, and a tree move can be
attempted by executing step (2c). The breadth-first searches are done directly inV (v, 3d)
by searching from vertex to vertex along the pointers; the implementation is quite natural.
Notice that we write vertices detected by the bread first search intoSUB(, , ) presumingthat
we will do a tree move. If a sub-animal is detected, then we already have a proposed tree

† The double-breadth first search [67] is started at the endpoints of the selected edge, and alternates from side to
side, while writing vertices intoSUB(1, , ) andSUB(2, , ) until the smaller sub-animal is detected. The labels and
coordinates of the smaller animal is then recorded in one of these sub-arrays.
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move. If we detect a leaf or a cycle instead, then we abandon the breadth-first search, and
execute a leaf or a cycle move.

(2a) Delete the leafe from the animal by removing a vertex and pointers fromV (v, 3d).
Next, select a vertexx and a direction in the animal, and suppose thaty is the vertex selected
oppositex. If y is not in the animal (check this by querying the hash table), then we attempt
to add the edgexy to the animal. Proceed to step 3 for the metropolis check: the number
of cycles remains the same, but the change in the number of contacts can be counted by
checking the hash table. Ify is a vertex already in the animal, then there is the possibility
thatxy is already an edge. If it is, then we have a self-intersection; we reject the move and
start again at step 1. Otherwise, addition ofxy will create a cycle: reject this attempt with
probability 0.5. Apply the metropolis check in step 3 to accept or reject the move.

(2b) Delete the edge by removing pointers fromV (v, 3d). Next, select a vertexx and
a direction in the animal, and suppose thaty is the vertex selected oppositex. If y is not in
the animal, then we attempt to appendxy to the animal: this move reduces the number of
cycles by one, and we query the hash table to count the change in the number of contacts.
Accept the attempt by the metropolis check in step 3. Ify is in the animal, thenxy might
be an edge, which gives a self-intersection: reject this attempt. Otherwise,xy is a contact
edge. Appendingxy to the animal leaves the number of contacts and cycles the same, so
we accept the attempt.

(2c) Delete the edgee by removing pointers fromV (v, 3d). The breadth-first search
has written the labels of the vertices in the smaller sub-animal inSUB(, , ), and we must
now rotate and translate these vertices in our attempt to perform a tree move. Choose
(uniformly) a vertexx from the sub-animal (from the list inSUB(,,)), and a vertexy in the
rest of the animal (this can be done by uniformly pickingy from V (v, 3d) and rejecting it
if y is in SUB(,,)). Choose a random rotation from the octahedral group; we will rotate the
sub-animal about the vertexy. Choose a translation of the sub-animal which will translate
y to a random nearest neighbour ofx. The vertices in the smaller animal are now rotated
and translated and stored inSUB(,,), starting fromy and using the ordering generated by the
breadth-first search. At the same time, we remove the old vertices from the hash table, as
they are rotated and translated. Next, we check for self-intersections by adding the rotated
and translated vertices to the hash table; if a self-intersection is detected, then the attempt
is abandoned, and we restore the hash table before going back to step 1. The change in the
number of contacts is found by counting the number of nearest neighbours of vertices in
the hash table as the old vertices are removed and the rotated vertices are added. Accept
the animal by applying the metropolis check in step 3. If it is rejected, then restore the hash
table before returning to step 1.

(3) Apply the metropolis rule as set out in step 3′ and equation (3.6).
The amount of work in the algorithm in each attempt depends on the type of move. We

decide in O(1) CPU time if a selected edge is a leaf. We also expect the breadth-first search
to terminate quickly if the selected edge is in a cycle (since cycles are likely to be small).
Hence, we expect that all moves, except for tree moves, can be executed in O(1) CPU time,
as a rough estimate. On the other hand, a sub-animal of sizek will be detected in O(k)
CPU time by the double-breadth first search. Moreover, both searching for intersections,
and accepting or rejecting the move, takes at most O(k) CPU time, if the algorithm is
optimally coded. Letpn(X) be the probability that a move of typeX is attempted, then the
computational complexity of the algorithm is

CA ∼ (1− pn(T ))O(1)+ pn(T )〈bn〉. (3.8)
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Figure 3. The CPU time taken for 10 000 iterations of the algorithm (βk = βc = 0) as a function
of nε in (◦) two dimensions and (4) three dimensions.

We expectpn(T ) to converge to a constant between 0 and 1, asn→∞, and so, by (2.11),

CA ∼ nε. (3.9)

The number of iterations performed for each value ofn was 50 000N , whereN = 500
for most values ofn (it was taken to be less than 500 for the smallest animals). Data were
collected during the run and written to a file everyN iterations. This gives a time series
of length 50 000 which was subjected to a time-series analysis to find autocorrelation times
and estimates of the properties of the animal. Care was taken to avoid initial bias in the
simulation by relaxing the animals in runs with 106 iterations. The CPU times used for
short runs of 10 000 iterations are plotted in figure 3 for uniformly weighted animals in two
and in three dimensions (withβc = βk = 0 in (2.2)). In two dimensions,ε ≈ 0.74 and
in three dimensions,ε ≈ 0.65, for uniformly weighted trees [44]. The linear nature of the
plots supports (3.11). Linear fits to the data giveCA ≈ 1.7+ 0.18n0.74 in two dimensions
and CA ≈ 2.7+ 0.38n0.65 in three dimensions†. These results support our expectations
expressed in equation (3.11).

We analyse the performance of the algorithm further by first estimating the probabilities
that tree moves will be successful. We then consider the effect these probabilities have on
the autocorrelation times of the algorithm. Letpn(k|T ) be the conditional probability that
a tree move involving a branch of sizek is attempted,given that a tree move is attempted.
Then by (2.11),

∑
k kpn(k|T ) ∼ nε , and this suggests thatpn(k|T ) ∼ kε−2. Let Qn(k, T )

be the probability that a tree move on a branch of sizek is successful, given that it is
proposed. The dependence ofQn(k, T ) on k can be heuristically estimated as follows
(using an argument developed in [66]). Suppose that a cut edge was selected and deleted,
producing two sub-animals, one of sizek and the other of size(n− k − 1). If we assume
that cycles can be neglected, then the number of ways that we may attempt to put these
together to construct a new animal is given by 2dk(v−k)oh, where we follow the argument
leading up to equation (3.2). However, we may haveakan−k−1 different pairs of animals

† In section 4.3 we compute the values ofε. The estimates for trees used here is close to the values we will
obtain; see equation (4.16). If we are simulating critical percolation clusters, then the values ofε used for uniformly
weighted trees are inappropriate, and we must use the values obtained for critical percolation clusters.
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Figure 4. The dependence ofτ on n in (left) two dimensions and (right) three dimensions.τ
was measured in units of 500 attempted elementary moves.

to join, and at mostan of these will be successful. Therefore, the probability that we will
be successful in our attempt is at mostan/(2dk(v − k)ohakan−k−1), since not every animal
can be made in this way. Now note thatn/2d 6 v 6 n+ 1, and substitute (1.2) foran, ak
andan−k−1:

Qn(k, T ) ∼ n−θ kθ−1(n− k)θ−1. (3.10)

The key to the performance of the algorithm is the growth of autocorrelation times
with n. We can estimate this dependence heuristically as follows: letu and v be two
vertices in the animal. The probability that the correlations betweenu andv are destroyed
is approximated by the probability that a tree move is proposed and acceptedwith only one
of u or v in each sub-animal. This probability is given by∑

k

pn(k|T )Qn(k, T )
2k(n− k)

n2
∼ nε+θ−3 (3.11)

since the probability thatu and v are in different sub-animals is 2k(n − k)/n2, and after
substitution of the expected behaviour ofpn(k|T ) andQn(k, T ). Thus, the correlations are
destroyed on a time scale with asymptoticn-dependence given by

τ ∼ n3−ε−θ iterations. (3.12)

In two dimensions this gives a dependence ofτ ∼ n1.26 and in three dimensions,τ ∼ n0.85, if
we use the values forε in [44] and the accepted values forθ . In more than eight dimensions,
we predict thatτ approaches a constant or diverges logarithmically, sinceε = 1

2 andθ = 5
2.

In figure 4 we plot the autocorrelation time associated with the mean-square radius of
gyration (see section 4.2) as a function ofn3−ε−θ in two and three dimensions. In two
dimensions the data include values ofn up to n = 1500; the confidence intervals in the
measured autocorrelation times for larger values ofn are too large (more than 25% of the
size of the autocorrelation time) to contribute usefully to the graph. The data in figure 4
support the notion thatτ ∼ n1.26 in two dimensions andτ ∼ n0.85 in three dimensions. The
autocorrelation times in figure 4 are measured in terms of units of 500 iterations; for small
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values ofn this unit is too large to measureτ accurately. This explains the data points in
figure 4 which corresponds to smalln. In CPU time seconds, the autocorrelation time will
increase asτ ∼ n3−θ CPU seconds; in two dimensions this givesτ ∼ n2 CPU seconds and
in three dimensions this givesτ ∼ n3/2 CPU seconds.

The properties of the animals can also be efficiently computed. The numbern2R2
n (R2

n is
the square radius of gyration) can be updated after every attempted move. The mean branch
size can be estimated using the data generated by the breadth-first searches in the algorithm.
The mean number of cycles and mean number of contacts, as well as the mean perimeter,
the mean number of edges per cycle and the fraction of vertices of various degrees are
similarly generated as part of the implementation of the algorithm, and can be efficiently
recorded. In other words, most of the CPU time in a run is spent generating animals.

4. Numerical results

In this section we discuss numerical results obtained by simulations of animals with the
algorithm described in section 3. The simulations were done for uniformly weighted animals
(βk = βc = 0), and for animals weighted as critical percolation clusters (the values of
the fugacities are then given by equations (2.5) withp = pc). We present data which
measures the performance of the algorithm in section 4.1. These data include statistics
on the acceptance fraction, the acceptance fractions of various moves, and autocorrelation
times of various observables. In section 4.2 we shift the focus by considering instead the
properties of animals, weighted uniformly or as critical percolation clusters. Our simulations
were done for a variety of sizes (n) of the animals. The value ofn was increased until
we could not reliably compute the autocorrelation times associated with the properties of
the animal for many of the observables. For uniformly weighted animals, we succeeded
in simulating animals up to size 5000, but at the critical percolation point we considered
animals only up to size 2000.

4.1. Acceptance and rejection of moves in algorithm R

The incidences of various moves in the algorithm and their acceptance fractions are good
indicators of the effectiveness of the algorithm. The probability that a certain type of move
will be proposed is related to the incidence of certain kinds of edges in the animal. For
example, a cycle–cycle or a cycle–leaf move will be proposed with the probability that a
uniformly selected edge is in a cycle. Tree moves are proposed when a cut edge is selected.

In figure 5 we plot the incidence of tree moves in the algorithm for simulating uniformly
weighted animals in two dimensions. The probability that a tree move of a given size is
proposed is estimated by the data presented with4’s, and the acceptance fraction is plotted
on the same graphs with+’s. The crucial observation here is that neither the acceptance
fraction of the larger tree moves, nor the proposals of these, are negligible. There is always
a (not insignificant) probability that a large tree move will succeed, and this leads to better
mixing in the algorithm (and thus to shorter autocorrelation times in observables measured
along the Markov chain). Data in three dimensions, and for animals simulated at the
percolation point, are similar to those illustrated in figure 5.

As before, we letpn(X) be the probability that a move of typeX is proposed, and
defineqn(X) to be the conditional probability that it is accepted (given that it was proposed).
Thenpn(T ) is the probability that a tree move is proposed (cf equations (3.10) and (3.11)).
Similarly, we letX take values CC for a cycle–cycle move, CL for a cycle–leaf move,
LL for a leaf–leaf move and LC for a leaf–cycle move. The incidence and the acceptance
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Figure 5. (4) The fraction of tree moves of a given size proposed by the algorithm, and
(+) the acceptance fraction of these proposed moves. These data were compiled from a run of
5000 000 iterations of uniformly weighted animals of size 500 in two dimensions. The proposals
of tree moves involving larger branches, and their acceptance fraction, decay very slowly. This
observation explains the fast convergence of algorithm R: there is a reasonable probability that
a large move will be proposed and accepted, making a big change in the structure of the animal.
We counted cycle moves and leaf moves as having size 1 in this graph. Data at the percolation
point, and in three dimensions, are very similar to the data above, and the conclusions are the
same.

Figure 6. (4’s) pn(T ) and (+’s) qn(T ) as a function ofn for uniformly weighted animals in
two dimensions. Both these quantities converge quickly to the constants in equation (4.1).

fraction of tree moves are plotted in figure 6 in two dimensions. The4’s are data points for
pn(T ), while qn(T ) is represented by the+’s. After some initial change,pn(T ) becomes
virtually independent ofn. Its limiting value, asn becomes large, can be estimated by
fitting the data by assuming thatpn(T ) ≈ ζ(T ) + An−0.5. The acceptance fraction of tree
moves remains weakly dependent onn, and we expect it to approach a constant (non-zero)
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Table 1. Acceptance fractions.

d = 2 d = 3

Observation Uniform Critical Uniform Critical

ζ (T) 0.6881 0.2449 0.6632 0.4651
η(T) 0.1254 0.0577 0.2776 0.1630
ζ (CC) 0.0098 0.1803 0.0043 0.0637
η(CC) 1 1 1 1
ζ (CL) 0.0203 0.0692 0.0189 0.0986
η(CL) 1 0.4196 1 0.3818
ζ (LC) 0.0406 0.0599 0.0377 0.0750
η(LC) 0.5 0.5 0.5 0.5
ζ (LL) 0.0829 0.0207 0.1626 0.1120
η(LL) 1 0.6081 1 0.7938

value asn → ∞†. The incidence of the other moves, and their acceptance fractions can
similarly be analysed. Suppose that (as above)pn(X) → ζ(X) and qn(X) → η(X) as n
becomes large. For the other moves, our estimates‡ of ζ(X) andη(X) are in table 1 (we
ignore data-points withn < 100 in compiling this table).

For uniformly weighted animals in the two-dimensional case, all cycle–cycle, cycle–leaf
and leaf–leaf moves proposed are accepted, while leaf–cycle moves proposed are accepted
with probability 0.5, as specified in algorithm R. We note that the probability of choosing
(uniformly) a cut edge in the animal is asymptoticallyp(cut edge) = ζ(T ) = 0.6881. By
counting vertices of degree 1 (see later) we also conclude that the probability of selecting
an edge which is a leaf isp(leaf) = 0.2563, so that the probability of selecting an edge
in a cycle isp(cycle) = 0.0556. A further 15.83% of the attempts involved the attempted
formation of 2-cycles, and were rejected. From these data it is possible to compute other
interesting statistics. For example, given that a leaf is chosen, the probability that a move
which forms a cycle is executed is 0.1189, etc.

In the case of animals at the critical percolation point in two dimensions we note that
the fraction of tree moves is much less than for uniformly weighted animals, but it is still
substantial. The acceptance fraction of tree moves is also reduced, but at close to 6% one
should still expect it to have a substantial effect on the performance of the algorithm. Note
that the acceptance fraction of leaf–cycle moves is 0.50. This is to be expected, since
deleting a leaf can break at most 2d − 1 contacts, andβc = 2dβk (see (2.5)). The more
compact nature and the larger incidence of cycles in these weighted animals are reflected by
the much larger incidence of cycle–cycle and cycle–leaf moves. Similar to the case above,
p(cut edge) = 0.2449,p(leaf) = 0.2139 andp(cycle) = 0.5412. The fraction of attempts
rejected due to the formation of 2-cycles is 42.50%.

We repeated this analysis in three dimensions. The results are similarly listed in
table 1. In the case of uniformly weighted animals we found thatp(cut edge) = 0.6632,
p(leaf) = 0.3062 andp(cycle) = 0.0306. The fraction of attempts rejected due to
the formation of 2-cycles is 11.33%. At the critical percolation point we found that
p(cut edge) = 0.4651,p(leaf) = 0.3014 andp(cycle) = 0.2335. The fraction of attempts
rejected due to the formation of 2-cycles is 18.56%. The acceptance fraction of most of the

† This happens because there will be a density of small branches (for example, with two edges) in the limiting
animal.
‡ The probabilities of proposed moves do not add up to 1. There are attempted moves which cannot be classified
as one of the cases below. These include moves which attempt to create 2-cycles in the animal.
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moves (and in particular, of the tree moves) is higher in three dimensions (compared with
two dimensions). We expect the algorithm to perform better in three dimensions, and this
should be reflected in shorter autocorrelation times for some of the observables that we will
compute.

The acceptance fractionof algorithm R is the probability that any attempted move will
be succesful. This is just the weighted sum of the acceptance fractions of the various moves.
Since there will always be a density of leaves in the animal, we expect the acceptance
fraction to converge to a constant asn → ∞. Extrapolating to largen, by assuming that
fn = f +An−0.5, and by ignoring all data points withn 6 100, we estimate that the limiting
acceptance fraction for uniformly weighted animals is

f (2) = 0.22 in two dimensions

f (3) = 0.39 in three dimensions.
(4.1)

At the critical percolation point, we obtain

f (2) = 0.27 in two dimensions

f (3) = 0.30 in three dimensions.
(4.2)

Incidentally, the above can be obtained directly from the values ofζ(X) andη(X) above
(f = ∑

X ζ(X)η(X)). The acceptance fraction in two dimensions increases from the
uniformly weighted animals to animals at the percolation point. In three dimensions the
opposite holds.

4.2. Autocorrelation times

Let {ωi} be the realization of a stationary Markov chain of statesωi generated by algorithm
R, and letAi = A(ωi) be an observable measured along the chain. We collected data
along the Markov chain in two ways. In the first instance we computedblock averages
Āj = (

∑N−1
k=0 ANj+k)/N , and in the second case we only considered a sub-chainÃj = ANj .

N was fixed at 500 for all our runs withn > 100. The block-average method is preferable
to the sub-chain method, since less information is lost from the original chain. We used it
whenever we could ‘update’ an observable in every successful iteration. Data were collected
in the block-average method for the mean-square radius of gyration, the mean branch size,
the mean number of contacts and of cycles, the mean perimeter, the mean number of edges
per cycle and the fraction of vertices of degreei. The mean span was computed by the
second method, updating it only everyN iterations.

Let Ai now represent either̄Ai or Ãi . If Ai is a stationary stochastic process, then its
mean is

µ = 〈Ai〉 = 〈Āi〉 = 〈Ã〉. (4.3)

The unnormalized autocorrelation function is

C(t) = 〈AiAi+t 〉 − µ2 (4.4)

and it is normalized asρ(t) = C(t)/C(0). The integrated autocorrelation timeτ of the
stochastic processAt is defined as

τ = 1
2

∞∑
t=−∞

ρ(t). (4.5)

By analysing our data, we must estimateµ andτ , from a finite sample from the stochastic
process. Note thatN sets a lower limit onτ : if the chainAi is uncorrelated, thenτ = 1

2 by
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Table 2. Dynamical exponents.

d = 2 d = 3

Uniform Critical Uniform Critical
Obs ρ(χ2

7 ) ρ(χ2
5 ) ρ(χ2

7 ) ρ(χ2
5 )

〈kn〉 0.89± 0.13(7.2) 1.58± 0.32(1.9) 0.92± 0.10(7.3) 1.39± 0.26(3.9)
〈cn〉 0.86± 0.10(3.3) 0.91± 0.26(2.4) 0.663± 0.070(8.4) 0.95± 0.17(4.7)
〈R2

n〉 1.28± 0.17(6.3) 1.74± 0.70(1.1) 0.917± 0.080(2.0) 1.48± 0.28(5.2)
〈Sn〉 1.27± 0.16(8.3) 1.61± 0.60(2.2) 0.882± 0.084(8.8) 1.45± 0.28(2.9)
〈Bn〉 1.17± 0.13(6.9) 1.46± 0.36(2.8) 0.723± 0.072(7.6) 1.31± 0.22(3.1)
〈Cn〉 0.175± 0.054(7.3) 1.38± 0.34(2.9) 0.160± 0.050(3.3) 1.25± 0.20(2.9)
〈sn〉 0.92± 0.13(5.6) 1.18± 0.40(1.9) 0.95± 0.10(8.4) 1.34± 0.28(3.3)

(4.5), in units ofN iterations. The autocorrelation time for the chainAi could be smaller
thanN/2, but we cannot measure this.

The natural (unbiased) estimator forµ is the sample mean:

Ā = 1

M

M∑
i=1

Ai (4.6)

where we have performed a run ofMN iterations. The variance in̄A is

VarĀ = 1

M
(2τ)C(0) (4.7)

provided thatM � τ and where we can estimateC(t)

Ĉ(t) = 1

M − |t |
M−|t |∑
i=1

(Ai − Ā)(Ai+|t | − Ā). (4.8)

τ is estimated over a ‘window’ of sizew by

τ̂ =
w∑

i=−w

Ĉ(i)

Ĉ(0)
. (4.9)

The variance inτ can be calculated by

Varτ ≈ 2(2w + 1)

M
τ 2 (4.10)

where the window is chosen suchτ � w � M, see [66] for details. In general we have
computedτ̂ and Varτ over windows of sizesw = sτ̂ , for s = 2, 5, 7, 10, 15, 20, 25, . . . ,50.
We used a ‘flatness’ criterion to select the best estimates ofτ̂ ; when it becomes insensitive
to s, then we can usually assume that the value ofw chosen is suitable. If it is not possible
to select a value ofs in this manner, then the run was deemed unsuitable for analysis.

The estimated autocorrelation times are listed in tables 1–4, and the autocorrelation times
for the mean-square radius or gyration, the mean span, the mean perimeter, and the mean
number of cycles are displayed in figure 7 for uniformly weighted animals, and for animals
at the critical percolation threshold. All the graphs in figure 7 indicate a linear relationship
between log(τ̂ ) and log(n), for the larger values ofn. Generally, the autocorrelation times for
the mean-square radius of gyration, the mean span, and the mean perimeter, are comparable,
and fall roughly in a band across the graphs. This indicates that these observables
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Figure 7. Measured autocorrelation times for the (◦) mean-square radius of gyration, (4) mean
span, (+) mean number of cycles, (×) mean perimeter. These log–log plots generally show a
linear relationship for larger values ofn. The first two graphs are for animals in two dimensions,
uniformly weighted, and weighted as critical percolation clusters. The bottom graphs are for
animals in three dimensions.

are dynamically dependent on the underlying algorithm in a similar way. It seems not
unreasonable that the move which most affects these is the tree move. The autocorrelation
time of the number of cycles seems to be slightly lower than those of the other, but it is not
clear, from the data, that we are measuring a different dynamical property of the algorithm
here. Equation (3.14) suggest the existence of a dynamical exponentρ which characterizes
the dynamical behaviour of the algorithm as a function ofn: we suspect that

τ ∼ nρ (4.11)

whereρ may depend on the type of observable from whichτ is estimated. Our data shows
that observables such as the acceptance fraction, the mean number of vertices of a given
degree and the mean number of edges in cycles, have small autocorrelations, even for large
values ofn. This indicates a small value ofρ in those cases. On the other hand, we argued
in section 3.2 thatρ = 3− ε − θ , and we should observe this in the autocorrelations of
some global observables along the Markov chain.

We analysed the data in figure 7, and data for other observables, by linear-least-squares
analysis to obtain best estimates forρ. The results are in table 2. Each row of table 2
corresponds to a different observable, and for each dimension we stated the nature of the
simulation (uniform, or at the critical percolation point), and theχ2

d statistics of the linear
regressions (withd degrees of freedom). Error bars in table 2 are 95% statistical confidence
intervals†. To minimize possible systematic errors, we discarded data obtained at smaller

† Here, and in the rest of this manuscript, we will always state 95% confidence intervals on estimates of exponents,
unless we explicitly state otherwise. The confidence intervals on raw data (see the appendix) are standard deviations.
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Table 3. Fraction of vertices of degreei.

n d = 2 d = 3

Degree Uniform Critical Uniform Critical

1 0.256 38(9) 0.2139(2) 0.306 18(8) 0.301 41(1)
2 0.491 1(2) 0.4109(2) 0.431 5(2) 0.402 9(2)3
3 0.223 9(2) 0.2979(3) 0.216 9(7) 0.222 95(9)
>4 0.028 69(5) 0.0774(2) 0.051 450(5) 0.072 72(9)

Mean valence 2.026 2.238 2.074 2.14

Table 4. Best estimates for exponents.

n d = 2 d = 3

Exponent Uniform Critical Uniform Critical

ρl 1.28± 0.17 1.68± 0.70 0.900± 0.084 1.47± 0.28
ν 0.6442± 0.001 7 0.5315± 0.0046 0.5016± 0.0013 0.4050± 0.0024
ε 0.74257± 0.000 85 0.4215± 0.0077 0.6587± 0.0015 0.4819± 0.0050
σ — 0.406± 0.011 — 0.4972± 0.0081

values ofn: all data obtain atn < 400 were ignored in the analysis of uniformly weighted
animals. For data measured at the critical percolation point, we ignored all data from values
of n < 300. There is a variety of values forρ, depending on the observable associated
with it. As expected, the values ofρ obtained from the mean-square radius of gyration and
from the mean span for uniformly weighted animals most closely agree with the prediction
made in equation (3.12), and in figure 4. Generally speaking, the largest values ofρ are
associated with the mean-square radius of gyration data, the mean span data and the mean
contact number data.ρ seems to be somewhat smaller for the other observables, indicating
that these (possibly) relax on shorter time scales.

4.3. Critical exponents and other results

In this section we present estimates of the critical exponents of animals, obtained by linear
least-squares fits to our data which we assume satisfy suitable scaling relations (as expressed
in section 2). These scaling relations are subject to corrections, and ignoring these introduce
systematic errors in the estimates of exponents, giving insteadeffectiveexponents. We
accept a least-squares fit as good if theχ2

d statistic is acceptable at the 95% level. Since
systematic errors seem to be most significant at the smallest value ofn in a good fit, we
estimate these errors by repeating our fit without the data points at the smallest value of
n. The absolute difference between the computed regression coefficients is taken as the
systematic error. In addition to the above, we also attempted to limit our models of scaling
relations to be two-parameter models. Thus, using the simplest model, we discarded data
points at the smallest value ofn in the regression until a good fit was achieved. We then
assumed that we had sufficiently controlled for the systematic error due to corrections to
scaling (unaccounted for by our model). We changed the model only as a last resort, when
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all attempts at finding a good fit using a two-parameter model failed. In some cases it was
necessary to discard data points which contribute anomalously to the least-square error; we
called such a point anoutlier if discarding it will produce an acceptable fit. Our raw data
are in the appendix.

4.3.1. Mean-square radius of gyration.We first analyse the data obtained for uniformly
weighted animals in two dimensions. By taking logarithms of equation (2.8), we obtain
log〈R2

n〉 ≈ C + 2ν logn. A fit with the minimum value ofn, nmin = 150, gives a
good fit: χ2

10 ≈ 11.1, which is acceptable at a level of less than 75%. The fit gives
2ν2 = 1.2883±0.0019†. We increasenmin to 200 to estimate a systematic error: This gives
2ν2 = 1.2869±0.0026, and computing the absolute difference gives the following estimate:
ν2 = 0.6442± 0.0010± 0.0007. Similar analyses were carried out in three dimensions and
at the critical percolation point. At the critical percolation point we found that the data
points atn = 300 in two dimensions, andn = 2000 in three dimensions, are outliers. Our
results are

ν2 = 0.6442± 0.0010± 0.0007 nmin = 150 χ2
10 ≈ 11.1 (< 75%)

ν
p

2 = 0.5315± 0.0034± 0.0012 nmin = 150 χ2
6 ≈ 10.0 (< 90%)

ν3 = 0.501 60± 0.000 61± 0.000 69 nmin = 200 χ2
9 ≈ 12.9 (< 90%)

ν
p

3 = 0.4050± 0.0020± 0.0004 nmin = 150 χ2
6 ≈ 6.4 (< 75%).

(4.12)

4.3.2. Mean span. The mean-span data seem to contain strong corrections to scaling,
and we could only obtain acceptable fits with large values ofnmin if we assume the two
parameter model log〈Sn〉C+ ∼ ν logn‡. Our best estimates are

ν2 = 0.6481± 0.0016± 0.0008 nmin = 400 χ2
7 ≈ 8.6 (< 75%)

ν
p

2 = 0.5429± 0.0024± 0.0018 nmin = 300 χ2
5 ≈ 8.6 (< 90%)

ν3 = 0.5100± 0.0011± 0.0013 nmin = 700 χ2
5 ≈ 8.1 (< 90%)

ν
p

3 = 0.4255± 0.0021± 0.0006 nmin = 500 χ2
3 ≈ 4.2 (< 90%).

(4.13)

The exponentν is systematically larger when computed from span data, compared with
its values when computed from the mean-square radius of gyration data. In addition, we
obtained a better fit to our model from the mean-square radius of gyration data in each of
the cases above. We therefore accept the values ofν estimated from the mean-square radius
of gyration data as more reliable.

† We will add a subscript to all exponents to indicate dimension. In addition, a superscriptp will indicate that an
exponent was computed for animals at the critical percolation point. For example,ν

p

2 will be the metric exponent
for animals at the critical percolation point in two dimensions. The format will always bebest estimate± 95%
statistical confidence interval± estimated systematic error.
‡ An assumption that log〈Sn〉 ∼ ν logn + An−1, where1 is an (effective) correction to the scaling exponent,
proved successful in reducing the size of the least-square error, butν turned out to be sensitive to the value of1.
Thus, it seemed prudent to stay with a two-parameter fit, even if we had to discard a lot of data for an acceptable
fit.



8058 E J Janse van Rensburg and N Madras

4.3.3. Mean branch size.An assumption that log〈Bn〉 = C + ε logn for some constantA
proved suitable for good fits to our data. Our best estimates are

ε2 = 0.742 57± 0.000 62± 0.000 23 nmin = 70 χ2
12 ≈ 17.7 (< 90%)

ε
p

2 = 0.4215± 0.0042± 0.0035 nmin = 70 χ2
9 ≈ 13.8 (< 90%)

ε3 = 0.658 74± 0.000 80± 0.000 69 nmin = 200 χ2
9 ≈ 8.1 (< 75%)

ε
p

3 = 0.4819± 0.0034± 0.0016 nmin = 150 χ2
7 ≈ 12.6 (< 95%).

(4.14)

4.3.4. Mean number of contacts.The mean number of contacts per vertex is expected to
converge to a constant asn increases. Examining (2.12), and our data, we observe that
K = 0.315 55± 0.000 38 for expanded animals in two dimensions†. If we assume this
as a good approximation ofK, then we can estimate the rate at which〈kn〉/n converges,
assuming that it is a power law:〈kn〉 ≈ 0.315 55n + An1−x . We therefore tried to fit
log(0.315 55− 〈kn〉/n) against logn. There may be other corrections to this, apart from
the termAn−x ; we assume that these will be dominated by the power-law correction for
all n > nmin (and wherenmin is some cut-off). Ifn is large, then the correction will be
dominated by the statistical errors in our simulations, so we will also taken 6 nmax in our
analysis. A (weighted) least-squares fit withnmin = 100 andnmax = 1000 gives a fit with
a large least squares error, and withx ≈ 1.070. Additional fits with other values fornmin

andnmax indicate thatx is not very sensitive to the values ofnmin andnmax. Thus, while
the uncertainty inx is large, our estimate, that it is close to 1, indicates that the corrections
to 〈kn〉/n go to zero fast with increasingn. If we repeat this analysis in the other cases, we
obtain

K2 = 0.315 55± 0.000 38 x ≈ 1

K
p

2 = 0.5397± 0.0017 x ≈ 0.9

K3 = 0.3660± 0.0052 x ≈ 1

K
p

3 = 0.6972± 0.0024 x ≈ 0.85.

(4.15)

4.3.5. Mean number of cycles.The mean number of cycles per vertex is also expected to
converge to a constant with increasingn (see equation (2.13)). We analysed our data in the
same manner as for the mean number of contacts. We were able to estimate the limit of
〈cn〉/n by plotting it againstn. For largen this is converged to about three or four digits.
We obtain

C2 = 0.012 47± 0.000 07

C
p

2 = 0.107 05± 0.000 40

C3 = 0.006 515± 0.000 029

C
p

3 = 0.037 60± 0.000 19.

(4.16)

4.3.6. Mean perimeter. For expanded animals, the arguments preceding and following
(2.14) indicate that〈sn〉 should scale proportionally ton. We test this expectation by

† In this case, we must estimate the limit of〈kn〉/n asn→∞. By plotting 〈kn〉/n againstn, we observe that the
ratio is constant to about three or four digits, in which case we assume that the our data are converged to about
three or four digits. We can thus just take the results at the largest value ofn as our best estimate for the limit.
Implicitly we are assuming that the convergent corrections to the limit all goes to zero quite quickly withn, and
that there are no slow corrections which take longer to settle down.
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Figure 8. A plot of 〈sn〉/n againstn−0.6 for critical percolation clusters in two dimensions.
This plot can be interpreted as good support for (2.17).

assuming (2.14) and by doing least-squares fits to our data. Our best estimates forA are

A2 = 1.318 24± 0.000 34 nmin = 70 χ2
12 = 6.2 (< 10%)

A3 = 3.227 58± 0.000 34 nmin = 100 χ2
11 = 15.1 (< 90%).

(4.17)

At the critical percolation point, we expect instead the behaviour in (2.15), where there is
a surface correction to the linear behaviour of the mean perimeter. Simulation of percolation
clusters indicate thatσ ≈ 0.40 in both two and three dimensions (see [28]), so we can test
(2.15) by plotting〈sn〉/n againstn−0.6. In figure 8 we display the plot for our data in two
dimensions, and we interpret this again as strong support for (2.15) ifσ ≈ 0.4.

We can use the accepted values ofpc to estimate the exponentσ in (2.15). Since the
excess perimetert ′n at the critical percolation point is expected to scale asnσ , we assume
that

〈sn + kn〉
n

= 1− pc

pc
+ Cnσ−1 (4.18)

whereC is a constant, and where we argue as in the fourth footnote of section 2. A weighted
linear least-squares analysis of our data gives

σ2 = 0.4061± 0.0063± 0.0048 nmin = 40 χ2
10 = 3.3 (< 10%)

σ3 = 0.4972± 0.0029± 0.0052 nmin = 20 χ2
11 = 10.6 (< 75%).

(4.19)

The result in two dimensions is close to the expected value of 0.4, but the exponent is
slightly larger in three dimensions (we used the valuespc = 0.5 in two dimensions and
pc = 0.249 in three dimensions in equation (4.18)).

We can now estimate the value ofA in equation (2.15), assuming the values ofσ
estimated above. An assumption that〈sn〉/n = A+ Bnσ−1 gives acceptable fits:

A
p

2 ≈ 0.4408± 0.0043 nmin = 150 χ2
7 = 4.7 (< 50%)

A
p

3 ≈ 2.2640± 0.0017 nmin = 150 χ2
7 = 12.5 (< 95%)

(4.20)

where the point atn = 500 was an outlier in three dimensions. If we addA and K
(which we obtained for the mean contact number, and stated in equation (2.15)), then by
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the argument following (2.15) we should be able to estimatepc†. In two dimensions we
found thatA + K = 0.9809± 0.0045 which implies thatpc = 0.5048± 0.0011, and in
three dimensions,A+K = 2.9953± 0.0077 which givespc = 0.250 29± 0.000 49. These
estimates for the critical percolation probability are very close to their accepted values of1

2
in two dimensions and 0.249 in three dimensions [28].

4.3.7. Mean number of edges in a cycle.The mean numbers of edges in a cycle
is shown in table A.7. For expanded animals we can say with some certainty that
〈Cn〉 → 0.3835± 0.0022 in two dimensions, and〈Cn〉 → 0.2534± 0.0015 in three
dimensions. At the critical percolation point, the convergence of the mean number of
edges in a cycle is slow, and we cannot plot it againstn to obtain a limit. It seems possible
that 〈Cn〉 → ∞ with n, and we tried to explore this by assuming that〈Cn〉 = ω logn.
In two dimensions a least squares analysis givesω = 0.9261± 0.0052 with χ2

8 ≈ 13.2
(< 90%) and in three dimensions,ω = 0.5190± 0.0035 withχ2

7 ≈ 10.1 (< 90%). We do
not take this as strong evidence that our assumed model gives the correctn-dependence for
〈Cn〉, but we do accept this as evidence that the mean number of edges in a cycle diverges
with n.

4.3.8. The fraction of vertices of degreei. In all our simulations the fraction of vertices of
degreei have converged to four or five digits forn > 1000. We therefore state the results
at the largest values ofn as our best estimates of these fractions for infinite animals. Our
results are listed in table 3. The mean valence of sites can be computed from the data in
table 3 as we explained in section 2. These are also listed in table 3.

5. Discussion of results

In this paper we have proposed and tested a new metropolis Monte Carlo algorithm for the
simulation of lattice animals. We implemented the algorithm and tested it by measuring
some the observables associated with lattice animals. In particular, our data allows us to
estimate the exponentsρl , ν andε.

The dynamical exponents associated with various observables seems to adopt many
different values, as is apparent in table 1. Despite this, it seems that the exponents associated
with the mean span and mean-square radius of gyration are the largest, and are close in
value to each other in each of the cases we considered. Assuming that they do indeed
measure the same underlying dynamics, we can take the average to give our best estimate
of the dynamical exponent associated with the length scale of the animals. We call this
exponentρl and we record our best values in table 4. For uniform lattice trees, the same
exponent was measured for the non-local algorithm in [44], givingρ2

l (Trees) = 1.45±0.04
andρ3

l (Trees) = 1.12± 0.03 (the superscript indicates the number of dimensions). In the
case of animals we obtain hereρ2

l (Animal) = 1.28±0.17 andρ3
l (Animal) = 0.900±0.084.

The two-dimensional results are not inconsistent with the results for the tree algorithm, but
we do measure a smaller autocorrelation time in the case of three-dimensional animals.
Equation (3.12) suggests thatρl = 3 − ε − θ ; if we substitute our best estimates forε
and the accepted values forθ we do indeed find a value close to the measured value for
expanded animals.

† This observation is circular: we need to knowpc in order to estimateA andK in the first place. At best this
will give a self-consistent check on the algorithm and our (initial) value forpc. We do not hope to compute an
improved value for the critical percolation probability in this manner.
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The exponentν seems to be best estimated by the mean-square radius of gyration data.
There seemed to be significant corrections to scaling in the mean span, and we had to
discard many data points to obtain satisfactory fits in our analysis. Our best estimates forν

are stated in table 4, where we add the statistical and systematic errors to state a single error
bar. For expanded animals, the values ofν in table 4 compares very well with estimates for
lattice trees (see [44] and references therein). Indeed, our error bars onν are indeed smaller
than those obtained for trees (see [44, table 9]) in a large number of studies, no doubt
due to the fact that we simulated animals of size upto 5000.ν has also been estimated
for lattice animals in two dimensions in [63]. They obtain 0.628± 0.023, which barely
excludes our estimate. For animals at the critical percolation point the accepted estimated
of ν is approximately 0.53 in two dimensions and 0.40 in three dimensions†. Our results
are consistent with these estimates. Along theθ -line we expectν to assume the value of
trees in aθ -solvent; this is estimated to be 0.54±0.03 in two dimensions and 0.400±0.005
in three dimensions [45], also close to the value ofν at the percolation point. There seems
to be no reason to believe that these values should be different at the percolation point, or
along theθ ′ line in figure 2 (see for example [55]).

Best estimates for exponentε are also listed in table 4. For expanded animals, our
results are within the error bars of the branch exponent of lattice trees [44] in both two
and three dimensions, but the error bars in this paper are smaller, improving the previous
estimates for this exponent. At the critical percolation point we have newly computed values
for ε.

We were able to compute the crossover exponentσ from the excess perimeter data,
assuming thatpc = 0.5 in two dimensions andpc = 0.249 in three dimensions. Our result
in two dimensions is consistent with the estimate of 0.4 for σ in two dimensions [28], but
in three dimensions we found a slightly larger value. As a check on the consistency of our
a priori assumptions thatpc = 0.249 in three dimensions, we estimated the critical edge
probabilities for percolation from our data. The results were self-consistent, and supported
our belief that we simulated critical percolation clusters.

The fraction of vertices of degreei were computed for bond percolation in the square
lattice in [30] atp = pc (see [30, table 1]). They found thatδ1 = 0.215, δ2 = 0.410,
δ3 = 0.297 andδ4 = 0.078, in each case very close to our estimates in table 3. The mean
valence of a lattice tree is 2, and our computed mean valences in table 3 are in every case
close to 2. In fact, it is known that the mean valence of animals and critical percolation
clusters is equal to 2 in the scaling limit [30].
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† These estimates can be made from the relationR ∼ n(1+1/δ)/d for the root-mean-square radius of gyrationR
of a percolation cluster atp = pc. δ is a critical exponent (in the classical description associated with the scaling
of the magnetization with the external field at the critical point of a ferromagnet), andd is the spatial dimension.
It is thought thatδ = 18.00± 0.75 [68] in two dimensions, andδ = 5.0± 0.8 [69] in three dimensions (see
also [28]). We can use our best values forν at the critical percolation point to compute estimates forδ. We
obtainδ = 15.9± 2.4 in two dimensions, andδ = 4.66± 0.16 in three dimensions (the error bars include a 95%
confidence interval as well as an estimated systematic error).
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Appendix. Raw data

The following tables show the raw data from our Monte Carlo simulations. All confidence
intervals are standard deviations, stated as two digits in parentheses indicating the uncertainty
in the last two digits of the measured quantities.

Table A1. Mean-square radius of gyration.

d = 2 d = 3

n Uniform Critical Uniform Critical

10 1.866 72(81) 1.4264(11) 1.326 96(52) 1.204 21(62)
20 5.079 8(32) 3.4359(38) 3.006 9(12) 2.514 2(14)
40 13.005 2(89) 7.7088(84) 6.348 6(22) 4.807 9(26)
70 27.305(17) 14.441(18) 11.339 9(52) 7.862 1(62)

100 43.428(34) 21.318(37) 16.328 3(88) 10.635(12)
150 73.662(75) 33.188(73) 24.632(16) 14.899(24)
200 106.97(14) 45.12(14) 32.918(25) 18.806(34)
300 180.11(22) 70.79(35) 49.579(47) 26.213(73)
400 261.35(52) 94.23(57) 66.079(70) 32.91(11)
500 348.32(88) 120.68(89) 82.71(11) 39.77(17)
700 537.6(17) 172.7(21) 115.97(18) 51.61(28)

1000 846.9(32) 249.5(42) 166.03(34) 69.48(58)
1500 1436.2(7) 369.0(56) 248.07(58) 95.21(95)
2000 2074(16) 526(14) 331.5(11) 110.8(12)
3000 3439(24) — 496.3(19) —
4000 5087(51) — 667.2(29) —
5000 6680(130) — 827.9(39) —

Table A2. Mean span.

d = 2 d = 3

n Uniform Critical Uniform Critical

10 3.338 19(57) 2.9104(12) 2.230 01(34) 2.116 52(52)
20 5.730 1(14) 4.7778(24) 3.630 24(52) 3.347 35(77)
40 9.425 5(24) 7.4758(35) 5.575 13(70) 4.965 5(11)
70 13.862 9(27) 10.5019(49) 7.694 2(13) 6.630 8(19)

100 17.618 6(49) 12.9390(79) 9.379 5(19) 7.898 5(30)
150 23.097 3(86) 16.438(13) 11.691 8(26) 9.566 7(51)
200 27.943(13) 19.225(23) 13.637 0(36) 10.909 4(69)
300 36.420(16) 24.239(42) 16.901 1(56) 13.098(12)
400 43.968(32) 28.197(61) 19.640 9(74) 14.855(16)
500 50.854(44) 32.016(70) 22.051 8(94) 16.417(22)
700 63.295(67) 38.51(15) 26.257(14) 18.932(34)

1000 79.68(11) 46.71(28) 31.562(22) 22.145(52)
1500 103.88(18) 57.46(35) 38.741(29) 26.212(90)
2000 124.89(38) 68.07(47) 44.925(47) 29.531(93)
3000 161.50(44) — 55.188(68) —
4000 195.69(63) — 63.890(87) —
5000 224.9(15) — 71.49(13) —
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Table A3. Mean branch size.

d = 2 d = 3

n Uniform Critical Uniform Critical

10 1.7240(11) 1.2282(22) 1.658 44(96) 1.5191(13)
20 3.0241(21) 1.7947(45) 2.820 1(12) 2.3956(20)
40 5.1240(31) 2.4927(59) 4.576 2(15) 3.5575(24)
70 7.7927(36) 3.2165(72) 6.678 4(27) 4.7948(43)

100 10.1543(52) 3.748(11) 8.469 4(38) 5.7663(65)
150 13.7372(88) 4.463(14) 11.088 3(56) 7.057(12)
200 17.001(13) 5.021(21) 13.424 1(77) 8.116(14)
300 22.990(14) 6.026(32) 17.554(12) 9.889(24)
400 28.419(31) 6.706(48) 21.231(17) 11.327(31)
500 33.587(44) 7.358(61) 24.571(21) 12.717(46)
700 43.115(65) 8.45(11) 30.683(32) 14.793(67)

1000 56.10(13) 9.76(15) 38.848(48) 17.73(11)
1500 75.94(20) 11.32(22) 50.679(76) 21.11(18)
2000 94.03(28) 12.85(28) 61.13(11) 24.24(25)
3000 125.58(42) — 79.75(17) —
4000 156.97(81) — 96.58(23) —
5000 184.1(13) — 111.69(34) —

Table A4. Mean number of contacts.

d = 2 d = 3

n Uniform Critical Uniform Critical

10 1.6234(13) 1.9704(23) 1.4890(13) 1.7942(17)
20 4.5653(40) 5.7366(69) 4.6276(27) 5.9440(40)
40 10.7779(77) 14.443(12) 11.5819(45) 16.1468(74)
70 20.1692(96) 28.634(14) 22.3902(97) 33.353(19)

100 29.633(14) 43.536(25) 33.298(14) 51.607(39)
150 45.407(26) 68.873(42) 51.606(24) 83.319(73)
200 61.184(36) 94.798(61) 69.875(34) 116.16(11)
300 92.900(54) 147.26(11) 106.570(52) 183.24(20)
400 124.435(82) 200.99(17) 143.211(71) 251.53(27)
500 155.98(11) 254.56(23) 179.872(90) 320.10(43)
700 219.26(14) 363.16(38) 253.30(13) 460.86(67)

1000 313.77(20) 527.89(78) 363.02(21) 672.4(11)
1500 471.88(34) 803.5(12) 547.07(30) 1033.3(19)
2000 629.41(55) 1079.3(17) 730.33(40) 1394.4(24)
3000 946.62(63) — 1095.49(68) —
4000 1262.05(85) — 1464.22(78) —
5000 1577.73(95) — 1830.0(13) —
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Table A5. Mean number of cycles.

d = 2 d = 3

n Uniform Critical Uniform Critical

10 0.069 45(35) 0.4909(20) 0.031 91(19) 0.142 39(84)
20 0.194 14(93) 1.3799(52) 0.091 37(37) 0.446 4(15)
40 0.445 7(15) 3.3138(87) 0.227 52(55) 1.119 5(23)
70 0.817 8(19) 6.334(12) 0.424 97(95) 2.184 2(43)

100 1.195 0(27) 9.416(19) 0.622 0(14) 3.267 6(63)
150 1.826 9(41) 14.653(28) 0.949 3(22) 5.130(11)
200 2.450 3(52) 19.957(42) 1.277 2(30) 6.988(14)
300 3.689 6(82) 30.485(65) 1.922 1(41) 10.773(23)
400 4.947(11) 41.164(86) 2.577 6(62) 14.546(32)
500 6.169(14) 51.98(11) 3.249 0(72) 18.233(38)
700 8.716(21) 73.445(18) 4.555(11) 25.880(57)

1000 12.415(28) 105.66(23) 6.491(16) 37.262(78)
1500 18.611(43) 159.08(33) 9.783(23) 56.50(14)
2000 24.925(57) 214.10(40) 13.042(29) 75.19(19)
3000 37.373(94) — 19.498(47) —
4000 49.72(11) — 26.054(59) —
5000 62.35(16) — 32.574(73) —

Table A6. Mean perimeter.

d = 2 d = 3

n Uniform Critical Uniform Critical

10 18.4754(28) 16.0957(55) 38.8306(28) 37.5573(55)
20 32.0929(91) 25.607(14) 72.1680(59) 67.434(12)
40 58.661(19) 39.859(27) 137.471(10) 122.989(22)
70 98.391(22) 59.398(44) 234.670(22) 202.190(50)

100 137.954(35) 77.265(74) 331.672(32) 279.181(93)
150 203.879(59) 105.64(13) 493.092(52) 404.58(19)
200 269.830(79) 132.58(22) 654.586(74) 527.76(27)
300 401.44(13) 185.53(37) 977.33(11) 770.89(47)
400 533.34(18) 235.36(62) 1 300.11(15) 1011.67(61)
500 665.36(23) 284.97(71) 1 622.76(20) 1252.4(10)
700 928.62(31) 381.9(12) 2 268.08(28) 1725.0(16)

1000 1324.81(45) 523.6(18) 3 237.02(47) 2433.6(26)
1500 1983.81(72) 758.7(26) 4 849.16(65) 3596.5(46)
2000 2643.5(13) 986.9(34) 6 463.10(86) 4768.0(52)
3000 3959.3(15) — 9 694.0(15) —
4000 5279.0(18) — 12 917.3(17) —
5000 6597.2(23) — 16 146.6(27) —
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Table A7. Mean number of edges per cycle.

d = 2 d = 3

n Uniform Critical Uniform Critical

10 0.140 39(7) 0.9917(37) 0.065 55(37) 0.2965(17)
20 0.218 03(10) 1.5336(49) 0.113 44(37) 0.5417(18)
40 0.276 25(10) 2.1005(45) 0.154 71(34) 0.8161(15)
70 0.309 13(68) 2.5733(39) 0.181 78(39) 1.0588(20)

100 0.325 55(72) 2.8957(49) 0.195 71(42) 1.2199(24)
150 0.341 93(78) 3.2599(59) 0.209 30(45) 1.4210(32)
200 0.349 73(79) 3.5278(74) 0.216 72(47) 1.5679(39)
300 0.358 93(85) 3.880(11) 0.226 15(53) 1.7772(52)
400 0.365 28(92) 4.182(12) 0.232 08(56) 1.9220(57)
500 0.368 4(11) 4.383(17) 0.236 73(56) 2.0371(74)
700 0.372 8(10) 4.692(21) 0.241 15(59) 2.2220(99)

1000 0.375 7(11) 5.051(31) 0.243 29(59) 2.392(12)
1500 0.377 6(12) 5.463(39) 0.247 83(62) 2.654(18)
2000 0.381 3(13) 5.695(45) 0.249 70(65) 2.792(22)
3000 0.383 1(11) — 0.250 49(69) —
4000 0.383 2(11) — 0.252 46(70) —
5000 0.383 5(11) — 0.253 41(71) —
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