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Abstract. We propose and study a metropolis Monte Carlo algorithm for the simulation of
weighted lattice animals i€¢ in the canonical ensemble (with a fixed number of edges). We
examine the implementation and performance of the algorithm. Data obtained by sampling
uniformly weighted animals, and animals weighted as critical-percolation clusters, are reported
and analysed. In particular, we estimate autocorrelation times and dynamical exponents to study
the efficiency of the algorithm, and estimate the metric and branch exponents of lattice animals
in two and three dimensions.

1. Introduction

Connected subgraphs of a lattice are called lattice animals, a hame which dates back to
the 1950s and studies of cell-growth problems (see for example [1]). The finite clusters
in lattice percolation are (weighted) lattice animals, and lattice animals are also used as
a model for branched polymers [2]. In this paper we study lattice animals in the square
and cubic latticesZ¢, for d = 2,3. In particular, we will be interested in the efficient
generation of lattice animals by a metropolis Monte Carlo algorithm.

Two animals are identical if they can be superimposed by a translation.oftiee of
an animal is the number of distinct lattice sites occupied by the animal, andizbef
an animal is the number of edges it contains. The number of distinct animals of a given
order, or of a given size, is the most fundamental quantity in the study of animals, Let
be the number of animals with edges, then ir2?, a; = 2, a, = 6, a3 = 14, and so on.
These animals areveak embeddingsr subgraphs of the lattice, and they are also called
edge animalsor bond animalscounted by their siZg There is a close connection between
percolation and animals counted by their size [3-5].

There is a large body of literature devoted to lattice animals. The focus in the vast
majority of studies is the calculation or approximation of critical exponents. In particular,
the sequence, is expected to have the following asymptotic behaviour:

a, ~n=o\" (1.1)

whered is a critical exponent called thentropic exponentand A is the growth constant
(which determines the exponential rate at which the number of animalgrows).
Equation (1.1) is the result of the limit lim - (loga,)/n = logx, which exists [6] (see
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also the work of Klein [7]); the power-law correction to the exponential factor is strongly
supported by the numerical simulation of animals [8]. Thetric exponenbf animals has
also been studied in much detail. This exponent defines a length scale for anin®)ss If
the root of the mean-square radius of gyration of animals widdges, then it is expected
that

Ry ~n". (1.2)

Critical dimensions and mean-field values of exponents were obtained byeapansion

study of the critical behaviour of lattice animals in good a@hdolvents [2]. The critical
dimension of animals in a good solvent is eight, and above this the mean field exponents
of animals are encountered: these @re g andv = ;11 (see also [4,9-12]). In &-solvent

the critical dimension is six. Incidentally, the critical dimension of percolation is also six,
and we shall later see that there is an intimate connection between percolation and animals
in a 6-solvent [13-15]. The dimensional reduction of lattice animalg mimensions to an

Ising model in an imaginary magnetic field éh— 2 dimensions has produced some ‘exact
values’ foré andv: In two dimensionsg = 1, and in three dimensiong,= g andv = %

[16].

The limiting free energy and phase diagram of a model of interacting lattice animals have
also been studied extensively. The existence of a limiting free energy in various models
of site animals, and studies describing some of the properties of the free energy can be
found in [17-20]. In all these models the free energy is a function of a cycle fugacity [21].
Increasing the cycle fugacity in these models gives animals rich in cycles more weight, and
at a critical value of the fugacity the model is thought to undergo a ‘collapse transition’ to
compact animals. It has also been established that a non-analyticity exists in the free energy
of a directed version of this model, presumably corresponding to a collapse transition [22].
For weakly embedded animals (counted by vertices) the limiting free energy as a function
of solvent contacts (or perimeter of the animal) has also been shown to exist [23]. A related
model of weakly embedded animals with a cycle fugacity has been studied in [24], where
several properties of the free energy have been proven (see also [13]).

Numerical work on animals falls into two broad categories: series enumeration and
Monte Carlo simulations. Counting animals for series analysis has its origin in the study
of percolation [25-28]. Later series enumerations for applications to models of animals
include those in [8,17,29-37]. The first simulations of lattice animals were in studies of
percolation. These include cluster growth methods [38—40] where a vertex is selected and
the animal (weighted like a percolation cluster) is grown from this ‘seed’. A second set of
Monte Carlo simulations is of the metropolis type: a random change is made to a percolation
cluster and the resulting cluster is proposed as an updated version of the old cluster. It is
accepted (or rejected) by throwing a random number, metropolis style. This is a stochastic
process which samples along a Markov chain in the state space of animals (weighted as
percolation clusters in the cases where percolation is studied). Examples of such algorithms
can be found in the work of Stauffer [41], Herrmann [42], and Peteed [31] in the 1970s
and followed by the work of Stratychuk and Soteros [43]. The new algorithm proposed
in this paper will be of the dynamic metropolis Monte Carlo type, and it will resemble a
non-local algorithm for lattice trees introduced in [44,45]. Other Monte Carlo algorithms
for models of branched polymers also focussed on trees (rather than animals); these include
the work of Redner [46], Seitz and Klein [47] and Meirovitch [48]. For a detailed account
and more references, see [44].
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: i Figure 1. An animal in the square lattice with 15 vertices, 16 edges,
*- - ® two cycles, five contacts and perimeter 18. The contacts are indicated by
: . : broken lines, the perimeter edges are indicated by dotted lines and edges
. ¢ . are indicated by full lines.

2. Lattice animals

In this section we review what is known about the phase diagram of animals with cycle
and contact fugacities. Let,(c, k) be the number of animals with edges,c cycles and
k contacts. In addition to these, we also identify perimeter edges (or ‘solvent contacts’)
as those edges of the lattice which have exactly one endpoint in the animal. bleethe
number of perimeter edges in an animal. These are all illustrated in figure 1.

Each vertex in an animal is incident with at least one edge in the animal, and then
with a number of other contact and perimeter edges. Since thene a#ices, each with
coordination number®, we observe that [13]:

l=v—n+c

(2.1)
2dv =2n+ 2k +s.

In other words, by specifying three (one of whichvier k) of the five numbergc, &, v, n, s},

we can compute the other two. In the edge-cycle-contact model, which we will be concerned
with in this paper, the number of vertices and perimeter edges are also determined for each
animal. The partition function of a model of animals with fugacities given to the numbers
of cycles and contacts is

Zu(Be, Be) = Y an(c, )&tk (2.2)
c.k

The values ofs; and 8, in Z, (B¢, Bx) can be chosen such that the animals are weighted as
percolation clusters at a probabilify that each edge is open. We see this by computing
the probability P, (p) that the cluster at the origin hasedges [49] (see also [13, 14]):

Pu(p) = ) v anle )p" (L= p)**. (2.3)
¢k

Using the relations in (2.1) to eliminateands in the above we obtain

Py(p) = p"(L— p)* 20" N "(n 4+ 1= )an(c, (L — p) 21— p) . (2.4)
c.k

Comparing this with (2.2) one notes that this is an unnormalized averagwith p related
to Bc and B;. In fact, for each value op one can comput@; and g, from
Be = —2dlog(1 — p)

25
B = —log(1 - p). ()
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These relations define a half-line in th&,, 8c)-plane along which animals are weighted as
percolation clusters at edge probabiljty Thefree energyper edge of this model is defined
as

1
Fu(Be. Br) = " log Z,, (Bc, Br).- (2.6)

The existence of a limiting free energy (in the limit— oco) was proven in a variety of
models of trees and animals [7, 24,50, 51]. Since our model has not been studied directly
before, we prove here that there exists a limiting free energy, and that it is convex in both
its arguments.

Theorem 1.There exists a functiotF (B¢, Br), convex in both its arguments, such that
F(Be, Br) = nli_[noo Fu(Be, Br)

for all B¢ € [—o0,00) and B, € [—o0,00). Moreover, F(Bc, Bi) is finite for all
Be € [—00, 0) and i € [—00, 00).

Proof. Let «; anda, be two animals and suppoaghasn; edgesg; cycles andk; contacts.
The top and bottom vertices ef; are found by a lexicographic ordering of the vertices
by their coordinates. Translate so that its bottom vertex has first coordinate one bigger
than the first coordinate of the top vertex @f, and all other coordinates equal. Define
¢ =c1+cp andk = k; + k. We can concatenate anda; by adding a new edge between
the top vertex ofy; and the bottom vertex af,, and we obtain a new animal withcycles,

k contacts andi; + n, + 1 edges. Since this animal is uniquely determinedvbynd s,

we can letc; andk; vary over all values between 0 andindk respectively, withe, andk,
chosen to keep andk constant; this gives the generalized supermultiplicative inequality:

> an, (e, kn)an, (e = 1,k — k1) < anymyra(c, k).

Cl.kl
Multiply this equation by &<+#* and sum over andk. This gives, by (2.2):

Zn, (Bes B) Zn, (Bes B) < Znytna+1(Bes Br)

and Z,_1(Bc, Br) is a supermultiplicative function. Consequenthy,_1(Bc, Br) IS a
superadditive function, and the limit in question exists [52]. To see that it is finite, note that

Zn(Be, Br) < a,€?d1nbe g2dnfi

since the maximum number of cycles in an animal is at m@ét-21)n, and the maximum
number of contacts is at most/2, and wheregs = max{ ¢, 0} and 8} = max{g, 0}.

Convexity of the free energy is shown by standard applications of the Cauchy—Schwartz
inequality. |

By theorem 1,7 (B¢, Bx) is continuous and differentiable almost everywhere [53]. There
is at least one point in thé€s,, B:)-plane where we know thaF (B, B:) is hon-analytic:
Edge percolation is a half-line in this plane, parametrizeghland given by equations (2.5).
Since P (p), the percolation probability, is non-analytic at¢ [49], we conclude that the
point (—2d log(1 — pc), —log(1 — p¢)) is a non-analytic point ofF (B¢, Br). The rest of the
phase diagram aF (B¢, Bx) is conjectured and described in [13, 15] (see figure 2). Thereis a
line of 6-transitions in this diagram which separates a phase of expanded animals (or animals
in a good solvent) from collapsed animals (or animals in a poor solvent) §fttensitions
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Figure 2. The conjectured phase diagram for animals in the contact-cycle ensemble. The
percolation point (marked with &) is known to be a non-analyticity in the free energy. Two
lines of distinctd-transitions ¢ andd’) are thought to meet at the percolation point (these are
lines of tricritical points). This makes the percolation point a multicritical point. Uniformly
weighted lattice trees are At = —oo and 8¢ = 0 in this diagram, and they undergo a collapse
transition as8; approaches a critical value. Percolation clusters are found along the broken line
marked percolation which starts at the origin. In two dimensigns= % and a numerical
estimate of the critical value g8 in lattice trees implies that (at least in two dimensions), the
line & may be a straight line.

should include the critical percolation point, since all other points on the percolation line
are believed to be analyiic There is a conjecture that the percolation point separates the
line of 6-transitions into two universality classes [13, 15, 45, 54, 55], each characterized by
its set of tricritical exponents (th@-transition is believed to be tricritical). In the case that

Bc is small or negative, thé-transition is believed to be into a collapsed phase poor in
cycles, while for larges., the collapse is to a phase rich in cycles. Th&ansition for
collapse into a cycle-rich phase is suggested to be in the universality class of the Ising
model [54, 55], with critical exponents determined by that critical poititis not obvious

that thesef-phases are indeed different phases (for example, they have the same metric
exponent). In this picture, the percolation point is a multicritical point where two lines
of distinct tricritical points meet, and associated with it is a set of multicritical exponents
(which are the percolation exponents). All of the above is conjecture, with the exception
that the location of the percolation point is known in two dimensions, and#iigg, B¢) is

T F(Be, Br) is conjectured to be non-analytic @&ipoints along any line in the phase diagram which intersects the
line of -transitions. It is believed that there are no other non-analyticities along the percolation line (except at the
critical percolation point; the percolation probability is known to be continuous along the percolation line, except
for possibly at the critical point in three and more dimensions) [49]. Thus, we expect that the critical percolation
point is at the intersection of the percolation line and the liné-tfansitions.

i We reserve judgement on collapse into a cycle-poor phase; it is possible that this is also in the Ising universality
class, but simulations for lattice trees [45,54] suggests a value of the crossover exponaith is slightly

smaller than predicted by the Ising universality class [56] (see also [55]).
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non-analytic at this point.

In this paper we present an algorithm for studying the above problem. In particular, we
test the algorithm by simulating animals in the expanded phagg @} and at the critical
percolation point in two and three dimensions. We focus in particular on the numerical
efficiency of the algorithm, and on the scaling behaviour of animals as observed through
various properties that we can measure by Monte Carlo. The numerical efficiency will be
tested by measuring autocorrelation times on some properties associated with the animals,
and we will discuss these in section 4. The properties of animals that we measure includes
the following.

2.1. Mean square radius of gyration

The algorithm will simulate animals with a constant number of edges. The number of
vertices will change as the cyclomatic index of the animals changes during the simulation.
The size (number of edges) of the animal will therefore be taken as a measure of the ‘mass’
of the animal. Thus, let every edgg i = 1...n, be taken to have unit mass, concentrated

at its midpoint. The mean square-radius of gyrati®j, of an animal withn edges is
defined by

1t > (r(er) = o) 2.7)
i3

wherer, is the centre-of-mass of the animal ang;) the position vector of the midpoint
of the ith edge. The mean-square radius of gyratioRy?), is the average oR? over all
animals. Naturally,R? < n2, and(R2) > Cn?? in d dimensions, wher€ is a constant.
Thus, we expect that the mean-square radius of gyration scales as

(RZ) ~ n® (2.8)

wherev is the metric exponent, and/d < v < 1.

The metric exponent takes on different values in the phases identified in figure 2. In
particular, in the collapsed phase we expect that 1/d, whereas in the expanded phase
it takes on the universal branched polymer value. At the percolation point one expects its
value to be that of percolation, and it has yet other values o thed6’ lines.

2.2. Mean span

Let x;(v;) be theith Cartesian coordinate of thih vertex of the animal. The span of an
animal withn edges andn vertices{v;}/; is defined by

Z max | xx(v;) — xc(v))]. (2.9)

1<i, j<m

If we accept that there is only one length scale in this model, then we conclude from
equation (2.8) that the mean span behaves as

(Sy) ~n". (2.10)

Equations (2.8) and (2.10) provide us with two different methods for estimating§ince
corrections to scaling tends to obscure the true value, & comparison between values
obtained from these two quantities are useful in assessing the accuracy of an estimate of
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2.3. Mean branch size

Lete; be a cut edge of an animal Thena —e¢; is a disconnected graph of two components,
called sub-animals We call the smaller sub-animaltaanchand letb, be its order. Then
surelyb, < n. The expected value df, is defined by taking its average over all branches
in all animals of sizex. We define the exponeut by

(by) ~ ne. (2.11)

(b,) can be estimated by uniformly choosing a cut edge and considering the resulting
branches in a uniform sample of animals of sizeWe can simplify this by choosing an
edge uniformly in each animal and, if a selected edge is not a cut edge, by defining the
resulting branch to have size zero. If the probability that a cut edge is selectgdris
animals of sizer, then the expected number of vertices in a branch will be

(Bn) ~ qnby + a- (/In)o ~ ans- (212)

We do not expecty, to approach zero as — oof, even on the lines of-transitions, and
so we conclude that

(B,) ~ n°. (2.13)

The fact that animals are believed to belong to the same universality class as trees indicates
that the value ot should be given by the branch exponent of trees. The number of edges in
the longest path in a lattice treg,, is expected to scale &g,) ~ n”. A heuristic argument

in [44] shows that the mean branch size of trees also scales with the exponenas, we
conclude that = p in (2.13). The mean-field value gf is % [44], and numerical results
indicate that it is larger thaé in dimensions lower than the critical dimension. Similarly

to the metric exponent, we expectto assume different values in the different phases in
figure 2.

2.4. Mean number of contacts

The mean number of contact&,), is the contact energy of the animal, since it is the
derivative of the free energy t6,. A pattern theorem for animals (see footnote below)
implies that(k,) > K’'n, whereK' is a constant. On the other hand, since each vertex has
maximum degree at most/i2we also conclude thgk,) < 2dn. Consequently, we expect

(k) ~ Kn (2.14)

where K is a constant. Since the free-energy density in animals seems to undergo a
continuous transition ag; increases through its critical value, there is a non-analyticity
in K at the collapse transition.

2.5. Mean number of cycles

The same arguments (made for the mean number of contacts) apply here. Thus, we expect
that

(cn) = Cn (2.15)

1 Neither does;, approach 1 ag — oo. This is a consequence of a ‘pattern theorem’ for animals (this result
is due to Madras, unpublished), which implies that there will be a density of cycles of length 4 in the animal.
In other words, the probability + ¢, is not expected to approach 0 ms—> oo. On the other hand, (expanded)
animals are also expected to scale as trees, which suggests that there is a non-zero density of cut edges.



8042 E J Janse van Rensburg and N Madras

where(c,) is the mean number of cycles aads a constant. Observe that the mean number
of vertices in an animal is given by— (c,) + 1, so that it is equivalent to the mean number
of cycles (by equation (2.1)).

2.6. Mean perimeter

The pattern theorem for animals indicates that for uniformly weighted animals, the number
of perimeter sites will grow proportionally to the number of edges. We expect this to be
true for all animals in the expanded phase in figure 2. Thus

(s,) =~ An (2.16)

for some constant.

We define theotal perimeterof a lattice animal to be sum of its contacts and perimeter
edges. There is a lengthy history associated with the total perimeter of percolation clusters
[28]. Lett, be the total perimeter of a percolation cluster. Then close to the critical yalue
of the edge probability, 7, is expected to scale as= (1 — p)/p)n +n® f((p — pc)n?),
whereo is a ‘crossover’ exponent which describes the crossover to critical behaviour as
p approachegp.. The differencer, =1, — ((1 — p)/p)n is called theexcess perimeter
The excess perimeter plays the role of a surface area in percolation, and the approach to
criticality is often described in terms of the condensation of a liquid to droplets=atp.
into drops forp > p.. Forp > p. the excess perimeter scales as the surface area of a liquid
sphere of volume:: ¢, oc '~V in d dimensions. This behaviour breaks downpat and
scaling arguments (see [28] for details) show tjai n?, ande — 1 may be interpreted
as the negative inverse of a ‘fractal dimension’ of the clustep at p.. For p < p this
picture does not apply, instead, the excess perimeter will scale proportionallyatal we
cannot interpret this as the contribution of a surface area (of a drop) to the perimeter.

The arguments above have some interesting implications for us: our expanded animals
are in the same phase in figure 2 as subcritical percolation clusters, and we can expect that
the perimeter will scale as in (2.16) above. For critical percolation clusters, we obtain the
additional surface correction, so we postulate that

(s,) =~ An + Bn°® (2.17)
at the critical percolation point. Moreover, if we consider the total perimeter of our clusters
by considering insteadr,) = (s, + k,), then at the percolation point we should obtain

($u + ky)/n — [(L— po)/pc] asn — oo, and we should be able to compute the critical
value of the percolation probability from our data.

2.7. The mean number of edges per cycle

Suppose that an edgeis selected uniformly from the animal. Lét, be the size of the
smallest cycle containing (say that a cycle of size zero is found if a cut edge is selected).
Since expanded animals scale like trees, we expegther to be not in a cycle, or to be

in a small cycle; thus we expect that,) — constant aa — oco. This argument does not
apply to critical percolation clusters.

t The term((1— p)/p)n is a ‘bulk term’, describing the contributions from the bulk of the cluster. It is obtained
by defining the generating function of percolation clusters at edge probapilitg, (p) = >, ax(c, kyp"q*t*
whereq = 1 — p, following (2.3). Direct computation shows that, + k,) = %n + qd% log Z,(p). The usual
finite size scaling assumptia#, (p) ~ g((p — pc)n?), whereo is a crossover exponent describing the crossover
to critical behaviour ang (x) is a universal scaling function, gives theand p dependence of,. The exponent

o is estimated to have a value close td th both two and three dimensions [28]; we will estimate its value later
from our numerical data.
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2.8. The fraction of vertices of degrée

A pattern theorem for animals implies that vertices of any given degree will occur with
positive density in the limitz — oco. Let §; be the density of vertices of degrée The
mean valence i¥ = > i§;. An observable closely related 10 and§; has been studied in
[29, 30] for percolation clusters.

3. Metropolis Monte Carlo of animals

There are a large number of numerical studies of animals and percolation clusters in the
physics and mathematics literature. The vast majority of these studies are exact enumeration
of animals or percolation clusters with a given number of edges or vertices (sites) [57—
59, 8, 21].

Monte Carlo studies of percolation were already done in the early 1960s [60]. Dean and
Bird [61] used a Monte Carlo algorithm to compute extensive tables of critical probabilities
for percolation. Their algorithm proceeds by selecting an unoccupied site in a finite lattice
uniformly. Turning the site on changes the distribution of clusters (animals) in the lattice.
The distribution is recorded and the process is repeated. Leath’s algorithm [38, 39] grows
a weighted percolation cluster by selecting a perimeter site of the cluster uniformly and
turning it on. The algorithm of Redner [46] also grows animals by choosing an active site
in the animal and ‘growing’ a new set of branches at this site. These algorithms can be
thought of as ‘static’ Monte Carlo algorithms.

In contrast to these static algorithms, dynamic Monte Carlo algorithms sample along
a Markov chain in the state space of (weighted) animals. Stoll and Domb [62] used
Monte Carlo simulation of the Ising model with a one-spin flip to accumulate statistics on
percolation clusters. Stauffer’s algorithm [5] is a dynamical Monte Carlo algorithm which
generates clusters with a fixed number of vertices. The elementary move is the exchange of
a cluster site with a perimeter site (both selected uniformly). The newly proposed cluster is
accepted metropolis style with probabilig — p)2’ where p is the probability that a site
is on, andAt is the change in the perimeter length of the animal [28, 41]. This algorithm
is particularly important in the development of animal simulations. By taking 0, one
can simulate (uniformly weighted) animals (these are at the origin of the graph in figure 2),
and properties of animals and percolation clusters can in principle be efficiently simulated
for any value ofp. In fact, it is apparent that by adapting the transition probability, one can
weight animals with respect to cycles, or contacts, or any intrinsic propertyp aah also
be taken negative. In that case the algorithm will sample along a Markov chain of animals
weighted to have few cycles and few contacts (this is noted by continuing the percolation
line in figure 2 by takingp negative in equations (2.5)).

All the algorithms described above are defined to simulate site-percolation or site-
animals. In some of these (Dean and Bird, Leath, and Stauffer's algorithms), it is not
a difficult problem to adapt the algorithm to similate edge animals and edge or bond
percolation. In addition, there is an efficient algorithm for edge animals in the literature
[63]. This algorithm does not preserve the size of the animals, and incorporates a global
move of the type used for trees in [44]. The invariant limit distribution is

1
Z(B1, B2, B3)
where thes; are weights conjugate to the perimetethe contact number and the number
of verticesv in the animals. Approximations of expected values of properties of animals
can be computed with respect to this distribution.

gbis+hak+pav (3.1)
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3.1. A non-local algorithm for lattice animals

In this section we explain a new algorithm for lattice animals with a fixed number of edges.
The algorithm will have the non-local character of the algorithm for trees in [44], and it
will sample animals weighted with a cycle and a contact fugacity (in other words, it will
sample animals from the phase diagram in figure 2 for finite value3.ofVe are primarily
interested in the numerical behaviour of the algorithm, and so we will simulate animals only
uniformly (at the origin in figure 2), or weighted like percolation clusters (at the percolation
point in figure 2).

The metropolis Monte Carlo algorithm for animals below will sample along a Markov
chain in the state space of animals witledges. It will attempt to find the next state in the
chain by means of an elementary move on the current state. To simplify matters, we first
discuss sampling along a symmetric chain, converging to the uniform distribution on the
state space. Suppose that we have an animalith » edgesk contactsp vertices and:
cycles. The algorithm proceeds as follows.

Algorithm S.

(1) Pick an edge uniformly in the animal.

(2a) If e is a leaf: deletee and select a verteX uniformly in o; — e (and do not select
the isolated point). Choose a nearest neighbddunf V uniformly. If UV is an edge in
a1 — e, then we reject this attempt, coumt as the next state and start again at step 1. If
UV is a perimeter edge, then we mowehere, creating a new animap = a1 — e+ UV
which we propose as the next stateUl¥ is a contact, then we choosg = a1 —e+ UV
with probability% as the next proposed state, otherwise we reject the attempt and return to
step 1 (after counting; as the next state).

(2b) If e is an edge in a cycle: deleteand select a verte¥ uniformly in o — e.
Choose a nearest neighbolir of V uniformly. If UV is an edge inx; — e, then reject
this attempt, and couni; as the next state and return to step 1.UIV is a contact or a
perimeter edge, then accept = a1 — e + UV as the next proposed state.

(2c) (Tree-moveptherwisee is a cut edge and; — e consists of two sub-animals: Let
A1 be the smaller of these sub-animals. We attempt to reattgchn order to create a
new animal. Rotatei; to A} by operating on it with a randomly chosen element of the
octahedral group. Pick two vertices at random, one on each sub-animal. Trafislabe
that the two chosen vertices are nearest neighbours (in oné pb&sible orientations). If
there are intersections between the two sub-animals, then we reject this attempt (and count
a as the next state and return to step 1). Otherwise we reconnect the animal by adding an
edge between the selected vertices to create

(3) Accepta, as the next state in the Markov chain and start again at step 1.

It is not immediately obvious that this algorithm is symmetric. There are several possible
situations. Suppose that anda, are distinct states following one another in the Markov
chain. Then we obtaiw, from «; by exactly one of the following: (1) a tree move, (2)
replacing a leaf by another leaf, (3) removing a leaf and creating a cycle (by turning a
contact into an edge), (4) removing an edge from a cycle and creating a leaf, (5) removing
an edge from a cycle and create another cycle by changing a contact into an edge. We can
now explicitly compute transition probabilities for each of these cases.

(1) Suppose that the two sub-animals created in the tree movevhakendk vertices.

Then if the octahedral group hag elements,

1

P(oy — az) = m 3.2)
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since the edge is selected with probabilitynl the two vertices are selected on the sub-
animals in one ok(v — k) ways, and the smaller is translated for reconnection in onelof 2
ways, and rotated in one of, ways. The probability for obtaining; from «, by reversing
every operation here is also given by (3.2).
(2) The probability of obtaininge, from «; is
1
P(Oll — 0[2) = m (33)
since the edge is selected with probabilitynland removing it leave& — 1) vertices from
which we select a new edge in one af(2 — 1) ways. Selecting a leaf ia, to createx;
follows exactly the same probabilities. Hence, this move is symmetric.

(3,4) Suppose that, is obtained fromx; by selecting a leaé and putting it back to
create a cycle. The probability of selecting the leaf ja,land the probability of selecting
a contact inu; — e is 2/2d (v — 1), since their argv — 1) vertices ina — e and the contact
can be selected from either of its endpoints. In addition, this elementary move is accepted
with probability % so that the transition probability is

1
2dn(v —1)°

a1 can be obtained fromy, by selecting the edge out of the cycle, and putting it back as
a leaf. The edge is selected with probabilityn]l and sincex, has (v — 1) vertices, the
probability of selecting the perimeter edge to put down the leaf2d w—1). Consequently,
the probability of changingr, back into«; is given by (3.4), and these cases are also
symmetric.

(5) In this casew; is obtained by moving an edge from a cycle dn to create a
new cycle. Note that; anda, have the same number of vertices Thus, the transition
probability is

P(ag — o) = (3.4)

(3.5)

since each edge can be selected ways, and a contact i, — e is selected in two ways
from 2dv. The transition probability frona, to «; is calculated in exactly the same way,
also giving (3.5). Thus, this move is also symmetric.

Consequently, algorithm S is symmetric and aperiodic. We note that it is irreducible
since any animal can be turned into a straight line by selecting edges in cycles and leaves
and apending them (as leaves) onto the top vertex (lexicographic most vertex) of the animal
in, for example, ther-direction. By the fundamental theorem of Markov chains, we see
that the invariant limit distribution of algorithm S is the uniform distribution in the space
of lattice animals withn edges in the hypercubic lattice [64].

Our aim is to sample animals weighted as in the summand of equation (2.2). To this
end, we modify algorithm S as follows by introducing two paramefgrand g, and by
replacing step 3 by step ® define algorithm R.

Algorithm R.

Steps 1 and 2 are identical to steps 1 and 2 of algorithm S.

(3) Suppose that, hasc’ cycles andk’ contacts. LetAc = ¢’ — c and Ak = k' — k,
wherea; hasc cycles andk contacts. Accepd, as the next state in the Markov chain with
probability

min{1, eActhaky (3.6)
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If a, is rejected them; is the next state in the Markov chain.
The fundamental theorem for Markov chains then implies that the invariant limit
distribution of algorithm R is

eﬁcC(aHﬂkk(ot)
ne = b 37

where Z, (8¢, Bx) is a normalizing constant given by equation (2.2) [64].

3.2. Implementation of algorithm R

Algorithm R was coded in C with data structures carefully designed to achieve an efficient
implementation. Suppose that the animal hagertices ind dimensions. Implementation

of the algorithm requires the following operations in the animal: (1) detection of cycles and
sub-animals, (2) detection of self-intersections and (3) counting contacts and cycles. The
vertices of the animal were stored in an arfag, 3d). The firstd addresses in thgh row

of V keep the coordinates of théh vertex in the animal. The remaining/ 2ddresses are
pointers which point to vertices adjacent to veriex the animal. The degree of th¢h

vertex is given by the number of pointers in these addresses (some of these will be empty
if the degree of vertex is less than 2).

We detected self-intersections in the animal, and counted the number of contacts, by
using hash coding (see [65]). Vertices of the current animal are put into a hash table
HASH10x n, d 4+ 1) using a hash function and linear probing (see [66] for details). The
vertices are kept in the hash table for most of the simulation, and stored by writing
coordinates into the firs# positions, and labels into th&l + 1)th position. An array
SUB2, |v/2],d + 1) was used to store the coordinates of vertices in sub-animals in the
case that a tree move is proposed. Vertices are readSldtg), , ) as they are encountered
in a double-breadth first searclior the smaller sub-animal. The firgt positions in an
address irSUB(, , ) will be occupied by the coordinates of vertices in the sub-animal, and
the (d + 1)th position will be for its label. Using these data structures, the implementation
of the algorithm was as follows:

(1) An edgee can be selected uniformly frori (v, 3d) by selecting uniformly two
random integers in [In] and [1, 2d] respectively. The first selects a vertex uniformly, and
the second a pointer to another vertex. If the pointer is empty, then we reject the attempt
and try again by selecting two new random integers.

(2) Determine whethee is a leaf by checking the degrees of its endpointse I§ a
leaf then step (2a) is executed next. Otherwise we must deciedsifin a cycle. This
is done efficiently by a breadth-first search in the animal, starting at an endpainfseé
for example [67], and see [44] for details). An advantage of a breadth-first search (over a
depth-first search) is that it will detect a smallest cycle containiefficiently. At the same
time, we can collect data on the size of smallest cycles in the animalislih a cycle, then
step (2b) is executed next, otherwisés a cut edge of the animal, and a tree move can be
attempted by executing step (2c¢). The breadth-first searches are done diréictly, Bt)
by searching from vertex to vertex along the pointers; the implementation is quite natural.
Notice that we write vertices detected by the bread first searctsSldt, , ) presumingthat
we will do a tree move. If a sub-animal is detected, then we already have a proposed tree

1 The double-breadth first search [67] is started at the endpoints of the selected edge, and alternates from side to
side, while writing vertices int®&UB(1, , ) andSUB(2, , ) until the smaller sub-animal is detected. The labels and
coordinates of the smaller animal is then recorded in one of these sub-arrays.
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move. If we detect a leaf or a cycle instead, then we abandon the breadth-first search, and
execute a leaf or a cycle move.

(2a) Delete the leaf from the animal by removing a vertex and pointers fréitv, 3d).

Next, select a vertex and a direction in the animal, and suppose thatthe vertex selected
oppositex. If y is not in the animal (check this by querying the hash table), then we attempt
to add the edgey to the animal. Proceed to step 3 for the metropolis check: the number
of cycles remains the same, but the change in the number of contacts can be counted by
checking the hash table. if is a vertex already in the animal, then there is the possibility
thatxy is already an edge. If it is, then we have a self-intersection; we reject the move and
start again at step 1. Otherwise, additionv@fwill create a cycle: reject this attempt with
probability Q5. Apply the metropolis check in step 3 to accept or reject the move.

(2b) Delete the edge by removing pointers frohtv, 3d). Next, select a vertex and
a direction in the animal, and suppose thas the vertex selected opposite If y is not in
the animal, then we attempt to appeng to the animal: this move reduces the number of
cycles by one, and we query the hash table to count the change in the number of contacts.
Accept the attempt by the metropolis check in step 3y i§ in the animal, therxy might
be an edge, which gives a self-intersection: reject this attempt. Otherwide,a contact
edge. Appendingy to the animal leaves the number of contacts and cycles the same, so
we accept the attempt.

(2c) Delete the edge by removing pointers fronV (v, 3d). The breadth-first search
has written the labels of the vertices in the smaller sub-anim&Ui, , ), and we must
now rotate and translate these vertices in our attempt to perform a tree move. Choose
(uniformly) a vertexx from the sub-animal (from the list iBUB(,,), and a vertex in the
rest of the animal (this can be done by uniformly pickindgrom V (v, 3d) and rejecting it
if y is in SUB(,,). Choose a random rotation from the octahedral group; we will rotate the
sub-animal about the vertex Choose a translation of the sub-animal which will translate
y to a random nearest neighbour.af The vertices in the smaller animal are now rotated
and translated and stored$UB(,,) starting fromy and using the ordering generated by the
breadth-first search. At the same time, we remove the old vertices from the hash table, as
they are rotated and translated. Next, we check for self-intersections by adding the rotated
and translated vertices to the hash table; if a self-intersection is detected, then the attempt
is abandoned, and we restore the hash table before going back to step 1. The change in the
number of contacts is found by counting the number of nearest neighbours of vertices in
the hash table as the old vertices are removed and the rotated vertices are added. Accept
the animal by applying the metropolis check in step 3. If it is rejected, then restore the hash
table before returning to step 1.

(3) Apply the metropolis rule as set out in stepaBd equation (3.6).

The amount of work in the algorithm in each attempt depends on the type of move. We
decide in @1) CPU time if a selected edge is a leaf. We also expect the breadth-first search
to terminate quickly if the selected edge is in a cycle (since cycles are likely to be small).
Hence, we expect that all moves, except for tree moves, can be executét) IGRL time,
as a rough estimate. On the other hand, a sub-animal ofksigdl be detected in @)

CPU time by the double-breadth first search. Moreover, both searching for intersections,
and accepting or rejecting the move, takes at mogt) @PU time, if the algorithm is
optimally coded. Letp,(X) be the probability that a move of typé is attemptedthen the
computational complexity of the algorithm is

Ca ~ (1= pu(T)OQ) + pu(T){by). (3-8)
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Figure 3. The CPU time taken for 10 000 iterations of the algorithép £ Bc = 0) as a function
of n€ in (o) two dimensions and/) three dimensions.

We expectp,(T) to converge to a constant between 0 and 1y as oo, and so, by (2.11),
Cp ~nt. (3.9

The number of iterations performed for each value: affas 50 000/, where N = 500
for most values of: (it was taken to be less than 500 for the smallest animals). Data were
collected during the run and written to a file eve¥yiterations. This gives a time series
of length 50 000 which was subjected to a time-series analysis to find autocorrelation times
and estimates of the properties of the animal. Care was taken to avoid initial bias in the
simulation by relaxing the animals in runs with®liderations. The CPU times used for
short runs of 10 000 iterations are plotted in figure 3 for uniformly weighted animals in two
and in three dimensions (with. = 8 = 0 in (2.2)). In two dimensionss ~ 0.74 and
in three dimensionss =~ 0.65, for uniformly weighted trees [44]. The linear nature of the
plots supports (3.11). Linear fits to the data givg ~ 1.7 + 0.18:%7* in two dimensions
and C, ~ 2.7 + 0.38:°%5 in three dimensions These results support our expectations
expressed in equation (3.11).

We analyse the performance of the algorithm further by first estimating the probabilities
that tree moves will be successful. We then consider the effect these probabilities have on
the autocorrelation times of the algorithm. Lgt(k|T) be the conditional probability that
a tree move involving a branch of sizeis attemptedgiventhat a tree move is attempted.
Then by (2.11),Y", kp,(k|T) ~ n¢, and this suggests that, (k|T) ~ k2. Let Q,(k, T)
be the probability that a tree move on a branch of dizis successful, given that it is
proposed. The dependence ©f,(k, T) on k can be heuristically estimated as follows
(using an argument developed in [66]). Suppose that a cut edge was selected and deleted,
producing two sub-animals, one of sizeand the other of sizén — k — 1). If we assume
that cycles can be neglected, then the number of ways that we may attempt to put these
together to construct a new animal is given ki@ — k)o;,, where we follow the argument
leading up to equation (3.2). However, we may haye, ,_; different pairs of animals

1 In section 4.3 we compute the values «f The estimates for trees used here is close to the values we will
obtain; see equation (4.16). If we are simulating critical percolation clusters, then the vatueseof for uniformly
weighted trees are inappropriate, and we must use the values obtained for critical percolation clusters.
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Figure 4. The dependence af on n in (left) two dimensions and (right) three dimensions.
was measured in units of 500 attempted elementary moves.

to join, and at most:, of these will be successful. Therefore, the probability that we will
be successful in our attempt is at magy (2dk(v — k)opara,_;_1), since not every animal
can be made in this way. Now note that2d < v < n + 1, and substitute (1.2) fat,, a;
anda,_;_1:

Q0,(k, Ty ~n~ %k 2(n — k)?~1. (3.10)

The key to the performance of the algorithm is the growth of autocorrelation times
with n. We can estimate this dependence heuristically as followsu lahd v be two
vertices in the animal. The probability that the correlations betweandv are destroyed
is approximated by the probability that a tree move is proposed and acaeipbeahly one
of u or v in each sub-animalThis probability is given by

. pukiT) 0k, 1T s (3.11)
k

since the probability thak and v are in different sub-animals isk2: — k)/n?, and after
substitution of the expected behaviourgf(k|T) and Q,,(k, T). Thus, the correlations are
destroyed on a time scale with asymptotidlependence given by

t ~n®? jterations (3.12)
In two dimensions this gives a dependence of n-2¢ and in three dimensions, ~ n%85, if
we use the values farin [44] and the accepted values #r In more than eight dimensions,
we predict that approaches a constant or diverges logarithmically, sénee% andé = g
In figure 4 we plot the autocorrelation time associated with the mean-square radius of
gyration (see section 4.2) as a functionof<~? in two and three dimensions. In two
dimensions the data include valuesmofup ton = 1500; the confidence intervals in the
measured autocorrelation times for larger valueg afre too large (more than 25% of the
size of the autocorrelation time) to contribute usefully to the graph. The data in figure 4
support the notion that ~ 11?8 in two dimensions ana ~ »n%8 in three dimensions. The
autocorrelation times in figure 4 are measured in terms of units of 500 iterations; for small
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values ofxn this unit is too large to measureaccurately. This explains the data points in
figure 4 which corresponds to small In CPU time seconds, the autocorrelation time will
increase as ~ n®? CPU seconds; in two dimensions this gives- n°> CPU seconds and
in three dimensions this gives~ n*? CPU seconds.

The properties of the animals can also be efficiently computed. The nurfiRé(R? is
the square radius of gyration) can be updated after every attempted move. The mean branch
size can be estimated using the data generated by the breadth-first searches in the algorithm.
The mean number of cycles and mean number of contacts, as well as the mean perimeter,
the mean number of edges per cycle and the fraction of vertices of various degrees are
similarly generated as part of the implementation of the algorithm, and can be efficiently
recorded. In other words, most of the CPU time in a run is spent generating animals.

4. Numerical results

In this section we discuss numerical results obtained by simulations of animals with the
algorithm described in section 3. The simulations were done for uniformly weighted animals
(B« = Bc = 0), and for animals weighted as critical percolation clusters (the values of
the fugacities are then given by equations (2.5) with= p.). We present data which
measures the performance of the algorithm in section 4.1. These data include statistics
on the acceptance fraction, the acceptance fractions of various moves, and autocorrelation
times of various observables. In section 4.2 we shift the focus by considering instead the
properties of animals, weighted uniformly or as critical percolation clusters. Our simulations
were done for a variety of sizeg)(of the animals. The value of was increased until

we could not reliably compute the autocorrelation times associated with the properties of
the animal for many of the observables. For uniformly weighted animals, we succeeded
in simulating animals up to size 5000, but at the critical percolation point we considered
animals only up to size 2000.

4.1. Acceptance and rejection of moves in algorithm R

The incidences of various moves in the algorithm and their acceptance fractions are good
indicators of the effectiveness of the algorithm. The probability that a certain type of move
will be proposed is related to the incidence of certain kinds of edges in the animal. For
example, a cycle—cycle or a cycle—leaf move will be proposed with the probability that a
uniformly selected edge is in a cycle. Tree moves are proposed when a cut edge is selected.

In figure 5 we plot the incidence of tree moves in the algorithm for simulating uniformly
weighted animals in two dimensions. The probability that a tree move of a given size is
proposed is estimated by the data presented with and the acceptance fraction is plotted
on the same graphs witl's. The crucial observation here is that neither the acceptance
fraction of the larger tree moves, nor the proposals of these, are negligible. There is always
a (not insignificant) probability that a large tree move will succeed, and this leads to better
mixing in the algorithm (and thus to shorter autocorrelation times in observables measured
along the Markov chain). Data in three dimensions, and for animals simulated at the
percolation point, are similar to those illustrated in figure 5.

As before, we letp,(X) be the probability that a move of typ¥ is proposed, and
defineg, (X) to be the conditional probability that it is accepted (given that it was proposed).
Thenp, (T) is the probability that a tree move is proposed (cf equations (3.10) and (3.11)).
Similarly, we let X take values CC for a cycle—cycle move, CL for a cycle-leaf move,
LL for a leaf-leaf move and LC for a leaf—cycle move. The incidence and the acceptance
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Figure 5. (A) The fraction of tree moves of a given size proposed by the algorithm, and
(+) the acceptance fraction of these proposed moves. These data were compiled from a run of
5000 000 iterations of uniformly weighted animals of size 500 in two dimensions. The proposals
of tree moves involving larger branches, and their acceptance fraction, decay very slowly. This
observation explains the fast convergence of algorithm R: there is a reasonable probability that
a large move will be proposed and accepted, making a big change in the structure of the animal.
We counted cycle moves and leaf moves as having size 1 in this graph. Data at the percolation
point, and in three dimensions, are very similar to the data above, and the conclusions are the

same.
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Figure 6. (A’s) p,(T) and ('s) ¢,(T) as a function ofz for uniformly weighted animals in
two dimensions. Both these quantities converge quickly to the constants in equation (4.1).

fraction of tree moves are plotted in figure 6 in two dimensions. Algeare data points for
pn(T), while ¢, (T) is represented by the’s. After some initial changep,(T) becomes
virtually independent of:. Its limiting value, asn becomes large, can be estimated by
fitting the data by assuming that,(T) ~ ¢(T) + An~°°. The acceptance fraction of tree
moves remains weakly dependent/grand we expect it to approach a constant (non-zero)
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Table 1. Acceptance fractions.

d=2 d=3

Observation  Uniform  Critical  Uniform  Critical

(M) 0.6881 02449 06632 04651
n(T) 01254 Q0577 02776 01630
¢(CC) 00098 01803 Q0043 00637
17(CC) 1 1 1 1
¢(CL) 0.0203 00692 00189 00986
n(CL) 1 04196 1 03818
¢(LC) 0.0406 00599 Q0377 Q0750
n(LC) 0.5 05 05 05
¢(LL) 0.0829 00207 01626 01120
n(LL) 1 0.6081 1 07938

value asn — oof. The incidence of the other moves, and their acceptance fractions can
similarly be analysed. Suppose that (as abgwg)X) — ¢(X) andg¢,(X) — n(X) asn
becomes large. For the other moves, our estimadég (X) andn(X) are in table 1 (we
ignore data-points witlk < 100 in compiling this table).

For uniformly weighted animals in the two-dimensional case, all cycle—cycle, cycle—leaf
and leaf-leaf moves proposed are accepted, while leaf-cycle moves proposed are accepted
with probability Q5, as specified in algorithm R. We note that the probability of choosing
(uniformly) a cut edge in the animal is asymptoticaflycut edge = ¢(T) = 0.6881. By
counting vertices of degree 1 (see later) we also conclude that the probability of selecting
an edge which is a leaf ig(leaf) = 0.2563, so that the probability of selecting an edge
in a cycle isp(cycle) = 0.0556. A further 183% of the attempts involved the attempted
formation of 2-cycles, and were rejected. From these data it is possible to compute other
interesting statistics. For example, given that a leaf is chosen, the probability that a move
which forms a cycle is executed is11.89, etc.

In the case of animals at the critical percolation point in two dimensions we note that
the fraction of tree moves is much less than for uniformly weighted animals, but it is still
substantial. The acceptance fraction of tree moves is also reduced, but at close to 6% one
should still expect it to have a substantial effect on the performance of the algorithm. Note
that the acceptance fraction of leaf-cycle moves.E00 This is to be expected, since
deleting a leaf can break at mosf 2 1 contacts, ang. = 2dg; (see (2.5)). The more
compact nature and the larger incidence of cycles in these weighted animals are reflected by
the much larger incidence of cycle—cycle and cycle—leaf moves. Similar to the case above,
p(cut edge = 0.2449, p(leaf) = 0.2139 andp(cycle) = 0.5412. The fraction of attempts
rejected due to the formation of 2-cycles is.B@%b.

We repeated this analysis in three dimensions. The results are similarly listed in
table 1. In the case of uniformly weighted animals we found {h@ut edgé = 0.6632,
p(leafy = 0.3062 andp(cycley = 0.0306. The fraction of attempts rejected due to
the formation of 2-cycles is 133%. At the critical percolation point we found that
p(cut edge = 0.4651, p(leaf) = 0.3014 andp(cycle) = 0.2335. The fraction of attempts
rejected due to the formation of 2-cycles is3®%. The acceptance fraction of most of the

t This happens because there will be a density of small branches (for example, with two edges) in the limiting
animal.

1 The probabilities of proposed moves do not add up to 1. There are attempted moves which cannot be classified
as one of the cases below. These include moves which attempt to create 2-cycles in the animal.
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moves (and in particular, of the tree moves) is higher in three dimensions (compared with
two dimensions). We expect the algorithm to perform better in three dimensions, and this
should be reflected in shorter autocorrelation times for some of the observables that we will
compute.

The acceptance fractiorf algorithm R is the probability that any attempted move will
be succesful. This is just the weighted sum of the acceptance fractions of the various moves.
Since there will always be a density of leaves in the animal, we expect the acceptance
fraction to converge to a constant as—> oco. Extrapolating to large:, by assuming that
f, = f+An~%5 and by ignoring all data points with < 100, we estimate that the limiting
acceptance fraction for uniformly weighted animals is

f@ =022 in two dimensions @.1)

f® =039 in three dimensions '
At the critical percolation point, we obtain

f@ =027 in two dimensions 2)

f®=0.30 in three dimensions '

Incidentally, the above can be obtained directly from the values(&f and n(X) above

(f = X x¢(X)n(X)). The acceptance fraction in two dimensions increases from the
uniformly weighted animals to animals at the percolation point. In three dimensions the
opposite holds.

4.2. Autocorrelation times

Let {w;} be the realization of a stationary Markov chain of stategenerated by algorithm
R, and letA; = A(w;) be an observable measured along the chain. We collected data
along the Markov chain in two ways. In the first instance we compbiedk averages
A_,- = (Z,](V:‘ol Ayj+)/N, and in the second case we only considered a sub—d}ai:ﬂ Ap;j.
N was fixed at 500 for all our runs with > 100. The block-average method is preferable
to the sub-chain method, since less information is lost from the original chain. We used it
whenever we could ‘update’ an observable in every successful iteration. Data were collected
in the block-average method for the mean-square radius of gyration, the mean branch size,
the mean number of contacts and of cycles, the mean perimeter, the mean number of edges
per cycle and the fraction of vertices of degrieeThe mean span was computed by the
second method, updating it only evely iterations.

Let .4; now represent eithed; or A;. If A; is a stationary stochastic process, then its
mean is

1= (A;) = (4;) = (A). (4.3)
The unnormalized autocorrelation function is
C(t) = (A i) — 1? (4.4)

and it is normalized ag(r) = C(t)/C(0). The integrated autocorrelation time of the
stochastic procesd, is defined as

oo

=3 Y p. (4.5)

t=—00

By analysing our data, we must estimateand z, from a finite sample from the stochastic
process. Note thay sets a lower limit orr: if the chain4; is uncorrelated, then = % by
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Table 2. Dynamical exponents.

d=2 d=3

Uniform Critical Uniform Critical
Obs  p(x?) p(xd o(x2) p(x2)

k,)  0.8940.13(7.2) 158+0.32(1.9) 0.924+0.10(7.3) 1.39+0.26(3.9)
cn) 0.86+0.10(3.3) 0.91+0.26(2.4) 0.663+0.0708.4) 0.95+0.17(4.7)
2y 1.28+0.17(6.3) 1.74+0.70(1.1) 0.9174+0.0802.0) 1.48+0.28(5.2)
n)  1.27+0.16(8.3) 1614+0.60(2.2) 0.882+0.0848.8) 1.45+0.28(2.9)
B,) 1.17+0.13(6.9) 1.46+0.36(2.8) 0.723+0.0727.6) 1.31+0.22(3.1)
) 0.175+0.054(7.3) 1.38+£0.34(2.9) 0.160£0.0503.3) 1.25+0.20(2.9)
Sn) 0.92+0.13(5.6) 1.18+0.40(1.9) 0.954+0.10(8.4) 1.34+0.28(3.3)

(4.5), in units of N iterations The autocorrelation time for the chaiy could be smaller
than N/2, but we cannot measure this.
The natural (unbiased) estimator foris the sample mean:

I
S ; 4.6
A= ;A (4.6)
where we have performed a run dfN iterations. The variance il is
- 1
Vard = . (20)C(0) (4.7)
provided thatM > t and where we can estimaf&(r)
A 1 M= - -
C@n) = D (A= Ay — A). (4.8)
M-t

T is estimated over a ‘window’ of size by

. & CO)
= — . 4.9

i=—w
The variance irnr can be calculated by

TR
M

Vart (4.10)

where the window is chosen sueh« w « M, see [66] for details. In general we have
computedr and Varr over windows of sizew = st, fors = 2,5,7, 10, 15, 20, 25, .. ., 50.
We used a ‘flatness’ criterion to select the best estimatés when it becomes insensitive
to s, then we can usually assume that the valuaafhosen is suitable. If it is not possible
to select a value aof in this manner, then the run was deemed unsuitable for analysis.

The estimated autocorrelation times are listed in tables 1-4, and the autocorrelation times
for the mean-square radius or gyration, the mean span, the mean perimeter, and the mean
number of cycles are displayed in figure 7 for uniformly weighted animals, and for animals
at the critical percolation threshold. All the graphs in figure 7 indicate a linear relationship
between logt) and logn), for the larger values of. Generally, the autocorrelation times for
the mean-square radius of gyration, the mean span, and the mean perimeter, are comparable,
and fall roughly in a band across the graphs. This indicates that these observables
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Figure 7. Measured autocorrelation times for thg (nean-square radius of gyratiom\) mean

span, ¢) mean number of cyclesx() mean perimeter. These log—log plots generally show a
linear relationship for larger values of The first two graphs are for animals in two dimensions,
uniformly weighted, and weighted as critical percolation clusters. The bottom graphs are for
animals in three dimensions.

are dynamically dependent on the underlying algorithm in a similar way. It seems not
unreasonable that the move which most affects these is the tree move. The autocorrelation
time of the number of cycles seems to be slightly lower than those of the other, but it is not
clear, from the data, that we are measuring a different dynamical property of the algorithm
here. Equation (3.14) suggest the existence of a dynamical expprvenich characterizes

the dynamical behaviour of the algorithm as a functiomofve suspect that

T~ nf (4.11)

wherep may depend on the type of observable from whicis estimated. Our data shows

that observables such as the acceptance fraction, the mean number of vertices of a given
degree and the mean number of edges in cycles, have small autocorrelations, even for large
values ofn. This indicates a small value @f in those cases. On the other hand, we argued

in section 3.2 thap = 3 — ¢ — 0, and we should observe this in the autocorrelations of
some global observables along the Markov chain.

We analysed the data in figure 7, and data for other observables, by linear-least-squares
analysis to obtain best estimates for The results are in table 2. Each row of table 2
corresponds to a different observable, and for each dimension we stated the nature of the
simulation (uniform, or at the critical percolation point), and tfestatistics of the linear
regressions (witld degrees of freedom). Error bars in table 2 are 95% statistical confidence
intervals. To minimize possible systematic errors, we discarded data obtained at smaller

1 Here, and in the rest of this manuscript, we will always state 95% confidence intervals on estimates of exponents,
unless we explicitly state otherwise. The confidence intervals on raw data (see the appendix) are standard deviations.
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Table 3. Fraction of vertices of degree

n d=2 d=3

Degree Uniform Critical Uniform Critical

1 0.256389) 0.21392) 0.30618§8) 0.3014%1)
2 0491 1(2) 0.41092) 043152 0.40292)3
3 0.22392) 0.29793) 0.21697) 0.222 959)
>4 0.028695) 0.07742) 0.05145Q@5) 0.072729)
Mean valence D26 2238 2074 214

Table 4. Best estimates for exponents.

n d=2 d=3

Exponent  Uniform Critical Uniform Critical

ol 1.28+0.17 168+ 0.70 0900+ 0.084 147+ 0.28

v 0.6442+0.0017 05315+ 0.0046 05016+ 0.0013 04050+ 0.0024
€ 0.74257+0.00085 04215+ 0.0077 06587+ 0.0015 04819+ 0.0050
o — 0.406+ 0.011 — 04972+ 0.0081

values ofn: all data obtain at < 400 were ignored in the analysis of uniformly weighted
animals. For data measured at the critical percolation point, we ignored all data from values
of n < 300. There is a variety of values far, depending on the observable associated
with it. As expected, the values @f obtained from the mean-square radius of gyration and
from the mean span for uniformly weighted animals most closely agree with the prediction
made in equation (3.12), and in figure 4. Generally speaking, the largest valyearef
associated with the mean-square radius of gyration data, the mean span data and the mean
contact number datge seems to be somewhat smaller for the other observables, indicating
that these (possibly) relax on shorter time scales.

4.3. Critical exponents and other results

In this section we present estimates of the critical exponents of animals, obtained by linear
least-squares fits to our data which we assume satisfy suitable scaling relations (as expressed
in section 2). These scaling relations are subject to corrections, and ignoring these introduce
systematic errors in the estimates of exponents, giving inséfadtive exponents. We
accept a least-squares fit as good if ﬂﬁastatistic is acceptable at the 95% level. Since
systematic errors seem to be most significant at the smallest valuénoé good fit, we
estimate these errors by repeating our fit without the data points at the smallest value of
n. The absolute difference between the computed regression coefficients is taken as the
systematic error. In addition to the above, we also attempted to limit our models of scaling
relations to be two-parameter models. Thus, using the simplest model, we discarded data
points at the smallest value afin the regression until a good fit was achieved. We then
assumed that we had sufficiently controlled for the systematic error due to corrections to
scaling (unaccounted for by our model). We changed the model only as a last resort, when
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all attempts at finding a good fit using a two-parameter model failed. In some cases it was
necessary to discard data points which contribute anomalously to the least-square error; we
called such a point anutlier if discarding it will produce an acceptable fit. Our raw data

are in the appendix.

4.3.1. Mean-square radius of gyrationWe first analyse the data obtained for uniformly
weighted animals in two dimensions. By taking logarithms of equation (2.8), we obtain
Iog(Rf) ~ C + 2vlogn. A fit with the minimum value ofn, nmin = 150, gives a
good fit: xj, ~ 11.1, which is acceptable at a level of less than 75%. The fit gives
2v, = 1.2883+0.0019. We increasem, to 200 to estimate a systematic error: This gives
2v, = 1.2869+0.0026, and computing the absolute difference gives the following estimate:
vo = 0.64424 0.0010+ 0.0007. Similar analyses were carried out in three dimensions and
at the critical percolation point. At the critical percolation point we found that the data
points atn = 300 in two dimensions, and = 2000 in three dimensions, are outliers. Our
results are

v = 0.6442+ 0.00104+ 0.0007  nmn=150  x%  ~ 111 (< 75%
v) = 05315+ 0.0034+0.0012  nmp =150  x2  ~ 100 (< 90%
v3 = 0.501604 0.000 61+ 0.00069  npmn =200  x2 ~ 129 (< 90%
vl = 04050+ 0.0020+ 0.0004  npn=150  x2 A 6.4 (< 75%).

(4.12)

4.3.2. Mean span. The mean-span data seem to contain strong corrections to scaling,
and we could only obtain acceptable fits with large valuesgf if we assume the two
parameter model 1dg,)C+ ~ vlogni. Our best estimates are

vy = 0.64814 0.0016+ 0.0008  nmin =400  x2 ~ 8.6 (< 75%)
v} = 05429+ 0.0024+ 0.0018  nmn =300  x2~ 8.6 (< 90%)
vy = 05100+ 0.0011+ 0.0013  nmn =700  x2~ 8.1 (< 90%)
v! = 04255+ 0.0021+ 0.0006  nmn =500  xZ~ 4.2 (< 90%).

(4.13)

The exponent is systematically larger when computed from span data, compared with
its values when computed from the mean-square radius of gyration data. In addition, we
obtained a better fit to our model from the mean-square radius of gyration data in each of
the cases above. We therefore accept the valuesesfimated from the mean-square radius
of gyration data as more reliable.

1 We will add a subscript to all exponents to indicate dimension. In addition, a supersasifitindicate that an
exponent was computed for animals at the critical percolation point. For exavﬁplm’]l be the metric exponent

for animals at the critical percolation point in two dimensions. The format will alwaybdst estimatet 95%
statistical confidence intervat estimated systematic error

1 An assumption that log,) ~ vlogn + An~%, where A is an (effective) correction to the scaling exponent,
proved successful in reducing the size of the least-square errov, thmed out to be sensitive to the value &f

Thus, it seemed prudent to stay with a two-parameter fit, even if we had to discard a lot of data for an acceptable
fit.
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4.3.3. Mean branch size.An assumption that lo@,) = C + e logn for some constant
proved suitable for good fits to our data. Our best estimates are

€2 = 0.742 574+ 0.000 62+ 0.000 23 Amin = 70 xZ, ~ 17.7 (< 90%)
€5 = 0.4215+ 0.0042+ 0.0035 Amin = 70 x& ~ 13.8 (< 90%)

€3 = 0.658 74+ 0.000 80+ 0.000 69 nmin = 200 xe ~ 8.1 (< 75%)
€ = 0.4819+ 0.0034+ 0.0016 nmin = 150 X%~ 12.6 (< 95%).

(4.14)

4.3.4. Mean number of contactsThe mean number of contacts per vertex is expected to
converge to a constant asincreases. Examining (2.12), and our data, we observe that
K = 0.315554+ 0.000 38 for expanded animals in two dimensipondf we assume this

as a good approximation @€, then we can estimate the rate at whigh)/n converges,
assuming that it is a power law(k,) ~ 0.3155% + An'~*. We therefore tried to fit
l0og(0.31555— (k,)/n) against logz. There may be other corrections to this, apart from
the termAn~; we assume that these will be dominated by the power-law correction for
all n > npin (@and wherenmi, is some cut-off). Ifn is large, then the correction will be
dominated by the statistical errors in our simulations, so we will also takenmax in our
analysis. A (weighted) least-squares fit withi, = 100 andnmax = 1000 gives a fit with

a large least squares error, and witle 1.070. Additional fits with other values fornmin

and nmay indicate thatx is not very sensitive to the values of,in andnmax. Thus, while

the uncertainty inx is large, our estimate, that it is close to 1, indicates that the corrections
to (k,)/n go to zero fast with increasing If we repeat this analysis in the other cases, we
obtain

K> = 0.315 55+ 0.000 38 x=1
K} = 05397+ 0.0017 x~09
K3 = 0.3660+ 0.0052 x=~1

K{ = 0.6972+ 0.0024 x ~ 0.85.

(4.15)

4.3.5. Mean number of cyclesThe mean number of cycles per vertex is also expected to
converge to a constant with increasimgsee equation (2.13)). We analysed our data in the
same manner as for the mean number of contacts. We were able to estimate the limit of
{c,)/n by plotting it against:. For largen this is converged to about three or four digits.
We obtain
C, =0.012474+ 0.00007
C3 = 0.107 05+ 0.000 40
C3 = 0.006 515+ 0.000 029

C§ = 0.037 60+ 0.000 19

(4.16)

4.3.6. Mean perimeter. For expanded animals, the arguments preceding and following
(2.14) indicate that(s,) should scale proportionally ta. We test this expectation by

1 In this case, we must estimate the limit@f,) /n asn — oco. By plotting (k,)/n againstz, we observe that the

ratio is constant to about three or four digits, in which case we assume that the our data are converged to about
three or four digits. We can thus just take the results at the largest value®four best estimate for the limit.
Implicitly we are assuming that the convergent corrections to the limit all goes to zero quite quickly,veitid

that there are no slow corrections which take longer to settle down.



Monte Carlo simulation of lattice animals 8059

1.5

<6_n>/n
1.0
(-]

0.5

0.0

0.0 0.05 0.10 0.15 020 025
nA-0.6)

Figure 8. A plot of (s,)/n againstn—98 for critical percolation clusters in two dimensions.
This plot can be interpreted as good support for (2.17).

assuming (2.14) and by doing least-squares fits to our data. Our best estimatearéor
A, = 1.318 24+ 0.000 34 Nimin = 70 X% =6.2 (< 10%)
Az = 3.227 58+ 0.000 34 nmin = 100 xZ = 15.1 (< 90%).

At the critical percolation point, we expect instead the behaviour in (2.15), where there is
a surface correction to the linear behaviour of the mean perimeter. Simulation of percolation
clusters indicate that ~ 0.40 in both two and three dimensions (see [28]), so we can test
(2.15) by plotting(s,)/n against.=%®. In figure 8 we display the plot for our data in two
dimensions, and we interpret this again as strong support for (2.155%if0.4.

We can use the accepted valuespgfto estimate the exponent in (2.15). Since the
excess perimetey, at the critical percolation point is expected to scalezaswe assume
that

(4.17)

n kn 1- —
(sn + kn) _ Pc 4 opot (4.18)
n Pc
whereC is a constant, and where we argue as in the fourth footnote of section 2. A weighted

linear least-squares analysis of our data gives
o2 = 0.4061+ 0.0063+ 0.0048 nmin = 40 %% =33 (< 10%
o3 = 0.4972+ 0.0029+ 0.0052 Rmin = 20 x4 = 106 (< 75%).

The result in two dimensions is close to the expected value.4f ut the exponent is
slightly larger in three dimensions (we used the valpes= 0.5 in two dimensions and
pc = 0.249 in three dimensions in equation (4.18)).

We can now estimate the value df in equation (2.15), assuming the values cof
estimated above. An assumption that)/n = A + Bn°~! gives acceptable fits:

Ab ~0.4408+0.0043  nyip = 150 X7 =47 (< 50%
AL ~ 226404 0.0017  nmin=150  x% =125 (< 95%

where the point ak = 500 was an outlier in three dimensions. If we addand K
(which we obtained for the mean contact number, and stated in equation (2.15)), then by

(4.19)

(4.20)
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the argument following (2.15) we should be able to estimate In two dimensions we
found thatA + K = 0.9809+ 0.0045 which implies thap. = 0.5048+ 0.0011, and in
three dimensionsd + K = 2.9953+ 0.0077 which givesp. = 0.250 29+ 0.00049. These
estimates for the critical percolation probability are very close to their accepted valées of
in two dimensions and.249 in three dimensions [28].

4.3.7. Mean number of edges in a cycl&he mean numbers of edges in a cycle

is shown in table A.7. For expanded animals we can say with some certainty that
(C,) — 0.3835+ 0.0022 in two dimensions, andC,) — 0.2534+ 0.0015 in three
dimensions. At the critical percolation point, the convergence of the mean number of
edges in a cycle is slow, and we cannot plot it againgi obtain a limit. It seems possible
that (C,) — oo with n, and we tried to explore this by assuming thé},) = wlogn.

In two dimensions a least squares analysis gives: 0.9261+ 0.0052 with x§ ~ 132

(< 90% and in three dimensiong = 0.5190+ 0.0035 with xs =~ 10.1 (< 90%). We do

not take this as strong evidence that our assumed model gives the eadepgendence for
(C,), but we do accept this as evidence that the mean number of edges in a cycle diverges
with 7.

4.3.8. The fraction of vertices of degree In all our simulations the fraction of vertices of
degreei have converged to four or five digits far> 1000. We therefore state the results

at the largest values of as our best estimates of these fractions for infinite animals. Our
results are listed in table 3. The mean valence of sites can be computed from the data in
table 3 as we explained in section 2. These are also listed in table 3.

5. Discussion of results

In this paper we have proposed and tested a new metropolis Monte Carlo algorithm for the
simulation of lattice animals. We implemented the algorithm and tested it by measuring
some the observables associated with lattice animals. In particular, our data allows us to
estimate the exponents, v ande.

The dynamical exponents associated with various observables seems to adopt many
different values, as is apparent in table 1. Despite this, it seems that the exponents associated
with the mean span and mean-square radius of gyration are the largest, and are close in
value to each other in each of the cases we considered. Assuming that they do indeed
measure the same underlying dynamics, we can take the average to give our best estimate
of the dynamical exponent associated with the length scale of the animals. We call this
exponentp, and we record our best values in table 4. For uniform lattice trees, the same
exponent was measured for the non-local algorithm in [44], giyif@rees = 1.45+0.04
and p?(Tree$ = 1.124 0.03 (the superscript indicates the number of dimensions). In the
case of animals we obtain hesg(Animal) = 1.284-0.17 andp?(Animal) = 0.900+0.084.

The two-dimensional results are not inconsistent with the results for the tree algorithm, but
we do measure a smaller autocorrelation time in the case of three-dimensional animals.
Equation (3.12) suggests that = 3 — ¢ — 0; if we substitute our best estimates for

and the accepted values férwe do indeed find a value close to the measured value for
expanded animals.

1 This observation is circular: we need to kngw in order to estimated and K in the first place. At best this
will give a self-consistent check on the algorithm and our (initial) valuegfar We do not hope to compute an
improved value for the critical percolation probability in this manner.
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The exponent seems to be best estimated by the mean-square radius of gyration data.
There seemed to be significant corrections to scaling in the mean span, and we had to
discard many data points to obtain satisfactory fits in our analysis. Our best estimates for
are stated in table 4, where we add the statistical and systematic errors to state a single error
bar. For expanded animals, the values a table 4 compares very well with estimates for
lattice trees (see [44] and references therein). Indeed, our error bararerindeed smaller
than those obtained for trees (see [44, table 9]) in a large number of studies, no doubt
due to the fact that we simulated animals of size upto 500as also been estimated
for lattice animals in two dimensions in [63]. They obtair628+ 0.023, which barely
excludes our estimate. For animals at the critical percolation point the accepted estimated
of v is approximately 3 in two dimensions and.40 in three dimensioris Our results
are consistent with these estimates. Along @Hie we expectv to assume the value of
trees in &-solvent; this is estimated to be53+0.03 in two dimensions and.£00+ 0.005
in three dimensions [45], also close to the value @it the percolation point. There seems
to be no reason to believe that these values should be different at the percolation point, or
along the¢’ line in figure 2 (see for example [55]).

Best estimates for exponeatare also listed in table 4. For expanded animals, our
results are within the error bars of the branch exponent of lattice trees [44] in both two
and three dimensions, but the error bars in this paper are smaller, improving the previous
estimates for this exponent. At the critical percolation point we have newly computed values
for e.

We were able to compute the crossover exporeritom the excess perimeter data,
assuming thap. = 0.5 in two dimensions ang. = 0.249 in three dimensions. Our result
in two dimensions is consistent with the estimate af for o in two dimensions [28], but
in three dimensions we found a slightly larger value. As a check on the consistency of our
a priori assumptions thap, = 0.249 in three dimensions, we estimated the critical edge
probabilities for percolation from our data. The results were self-consistent, and supported
our belief that we simulated critical percolation clusters.

The fraction of vertices of degreewere computed for bond percolation in the square
lattice in [30] atp = p. (see [30, table 1]). They found th& = 0.215, §, = 0.410,

83 = 0.297 andé, = 0.078, in each case very close to our estimates in table 3. The mean
valence of a lattice tree is 2, and our computed mean valences in table 3 are in every case
close to 2. In fact, it is known that the mean valence of animals and critical percolation
clusters is equal to 2 in the scaling limit [30].
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t These estimates can be made from the relaftorn n(+1/9/4 for the root-mean-square radius of gyratifin

of a percolation cluster gt = p¢. § is a critical exponent (in the classical description associated with the scaling
of the magnetization with the external field at the critical point of a ferromagnet)daadhe spatial dimension.

It is thought thats = 18.00+ 0.75 [68] in two dimensions, and = 5.0 + 0.8 [69] in three dimensions (see
also [28]). We can use our best values fomt the critical percolation point to compute estimates &orWe
obtains = 159+ 2.4 in two dimensions, and = 4.66+ 0.16 in three dimensions (the error bars include a 95%
confidence interval as well as an estimated systematic error).
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The following tables show the raw data from our Monte Carlo simulations. All confidence
intervals are standard deviations, stated as two digits in parentheses indicating the uncertainty
in the last two digits of the measured quantities.

Table Al. Mean-square radius of gyration.

d=2 d=3
n Uniform Critical Uniform Critical
10 1.866 72(81) 1.4264(11) 1.32696(52) 1.20421(62)
20 5.0798(32) 3.4359(38) 3.0069(12) 2.5142(14)
40 13.0052(89) 7.7088(84) 6.3486(22) 4.807 9(26)
70 27.305(17) 14.441(18) 11.3399(52) 7.8621(62)
100 43.428(34) 21.318(37) 16.328 3(88) 10.635(12)
150 73.662(75) 33.188(73) 24.632(16) 14.899(24)
200 106.97(14) 45.12(14) 32.918(25) 18.806(34)
300 180.11(22) 70.79(35) 49.579(47) 26.213(73)
400 261.35(52) 94.23(57) 66.079(70) 32.91(11)
500 348.32(88) 120.68(89) 82.71(11) 39.77(17)
700 537.6(17) 172.7(21) 115.97(18) 51.61(28)
1000 846.9(32) 249.5(42) 166.03(34) 69.48(58)
1500 1436.2(7) 369.0(56) 248.07(58) 95.21(95)
2000 2074(16) 526(14) 331.5(11) 110.8(12)
3000 3439(24) — 496.3(19) —
4000 5087(51) — 667.2(29) —
5000 6680(130) — 827.9(39) —
Table A2. Mean span.
d=2 d=3
n Uniform Critical Uniform Critical
10 3.33819(57) 2.9104(12) 2.23001(34) 2.11652(52)
20 5.7301(14) 4.7778(24) 3.63024(52) 3.34735(77)
40 9.4255(24) 7.4758(35) 5.57513(70) 4.9655(11)
70 13.8629(27) 10.5019(49) 7.6942(13) 6.6308(19)
100 17.6186(49) 12.9390(79) 9.3795(19) 7.898 5(30)
150 23.097 3(86) 16.438(13) 11.691 8(26) 9.566 7(51)
200 27.943(13) 19.225(23) 13.637 0(36) 10.909 4(69)
300 36.420(16) 24.239(42) 16.901 1(56) 13.098(12)
400 43.968(32) 28.197(61) 19.6409(74) 14.855(16)
500 50.854(44) 32.016(70) 22.0518(94) 16.417(22)
700 63.295(67) 38.51(15) 26.257(14) 18.932(34)
1000 79.68(11) 46.71(28) 31.562(22) 22.145(52)
1500 103.88(18) 57.46(35) 38.741(29) 26.212(90)
2000 124.89(38) 68.07(47) 44.925(47) 29.531(93)
3000 161.50(44) — 55.188(68) —
4000 195.69(63) — 63.890(87) —
5000 224.9(15) — 71.49(13) —
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Table A3. Mean branch size.
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d=2 d=3
n Uniform Critical Uniform Critical
10 1.7240(11) 1.2282(22) 1.65844(96) 1.5191(13)
20 3.0241(21) 1.7947(45) 2.8201(12) 2.3956(20)
40 5.1240(31) 2.4927(59) 4.576 2(15) 3.5575(24)
70 7.7927(36) 3.2165(72) 6.6784(27) 4.7948(43)
100 10.1543(52) 3.748(11) 8.469 4(38) 5.7663(65)
150 13.7372(88) 4.463(14) 11.088 3(56) 7.057(12)
200 17.001(13) 5.021(21) 13.424 1(77) 8.116(14)
300 22.990(14) 6.026(32) 17.554(12) 9.889(24)
400 28.419(31) 6.706(48) 21.231(17) 11.327(31)
500 33.587(44) 7.358(61) 24.571(21) 12.717(46)
700 43.115(65) 8.45(11) 30.683(32) 14.793(67)
1000 56.10(13) 9.76(15) 38.848(48) 17.73(11)
1500 75.94(20) 11.32(22) 50.679(76) 21.11(18)
2000 94.03(28) 12.85(28) 61.13(11) 24.24(25)
3000 125.58(42) — 79.75(17) —
4000 156.97(81) — 96.58(23) —
5000 184.1(13) — 111.69(34) —
Table A4. Mean number of contacts.
d=2 d=3
n Uniform Critical Uniform Critical
10 1.6234(13) 1.9704(23) 1.4890(13) 1.7942(17)
20 4.5653(40) 5.7366(69) 4.6276(27) 5.9440(40)
40 10.7779(77) 14.443(12) 11.5819(45) 16.1468(74)
70 20.1692(96) 28.634(14) 22.3902(97) 33.353(19)
100 29.633(14) 43.536(25) 33.298(14) 51.607(39)
150 45.407(26) 68.873(42) 51.606(24) 83.319(73)
200 61.184(36) 94.798(61) 69.875(34) 116.16(11)
300 92.900(54) 147.26(11) 106.570(52) 183.24(20)
400 124.435(82) 200.99(17) 143.211(71) 251.53(27)
500 155.98(11) 254.56(23) 179.872(90) 320.10(43)
700 219.26(14) 363.16(38) 253.30(13) 460.86(67)
1000 313.77(20) 527.89(78) 363.02(21) 672.4(11)
1500 471.88(34) 803.5(12) 547.07(30) 1033.3(19)
2000 629.41(55) 1079.3(17) 730.33(40) 1394.4(24)
3000 946.62(63) — 1095.49(68) —
4000 1262.05(85) — 1464.22(78) —
5000 1577.73(95) — 1830.0(13) —
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Table A5. Mean number of cycles.

d=2 d=3
n Uniform Critical Uniform Critical

10 0.06945(35) 0.4909(20) 0.03191(19) 0.14239(84)

20 0.19414(93) 1.3799(52) 0.09137(37) 0.446 4(15)

40 0.4457(15) 3.3138(87) 0.22752(55) 1.1195(23)

70 0.817 8(19) 6.334(12) 0.42497(95) 2.1842(43)
100 1.1950(27) 9.416(19) 0.6220(14) 3.2676(63)
150 1.8269(41) 14.653(28) 0.9493(22) 5.130(11)

200 2.4503(52) 19.957(42) 1.2772(30) 6.988(14)
300 3.6896(82) 30.485(65) 1.9221(41) 10.773(23)
400 4.947(11) 41.164(86) 2.5776(62) 14.546(32)
500 6.169(14) 51.98(11) 3.2490(72) 18.233(38)
700 8.716(21) 73.445(18) 4.555(11) 25.880(57)
1000 12.415(28) 105.66(23) 6.491(16) 37.262(78)
1500 18.611(43) 159.08(33) 9.783(23) 56.50(14)
2000 24.925(57) 214.10(40) 13.042(29) 75.19(19)
3000 37.373(94) — 19.498(47) —
4000 49.72(11) — 26.054(59) —
5000 62.35(16) — 32.574(73) —
Table A6. Mean perimeter.
d=2 d=3
n Uniform Critical Uniform Critical

10 18.4754(28) 16.0957(55) 38.8306(28) 37.5573(55)

20 32.0929(91) 25.607(14) 72.1680(59) 67.434(12)

40 58.661(19) 39.859(27) 137.471(10) 122.989(22)

70 98.391(22) 59.398(44) 234.670(22) 202.190(50)
100 137.954(35) 77.265(74) 331.672(32) 279.181(93)
150 203.879(59) 105.64(13) 493.092(52) 404.58(19)
200 269.830(79) 132.58(22) 654.586(74) 527.76(27)
300 401.44(13) 185.53(37) 977.33(11) 770.89(47)
400 533.34(18) 235.36(62) 1300.11(15) 1011.67(61)
500 665.36(23) 284.97(71) 1622.76(20) 1252.4(10)
700 928.62(31) 381.9(12) 2268.08(28) 1725.0(16)

1000 1324.81(45) 523.6(18) 3237.02(47) 2433.6(26)
1500 1983.81(72) 758.7(26) 4849.16(65) 3596.5(46)
2000 2643.5(13) 986.9(34) 6463.10(86) 4768.0(52)
3000 3959.3(15) — 9694.0(15) —
4000 5279.0(18) — 12917.3(17) —
5000 6597.2(23) — 16 146.6(27) —
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Table A7. Mean number of edges per cycle.

d=2 d=3

n Uniform Critical Uniform Critical

10  0.14039(7)  0.9917(37) 0.06555(37) 0.2965(17)
20 0.21803(10) 1.5336(49) 0.11344(37) 0.5417(18)
40 0.27625(10) 2.1005(45) 0.15471(34) 0.8161(15)
70 0.30913(68) 2.5733(39) 0.18178(39) 1.0588(20)

100 0.32555(72) 2.8957(49) 0.19571(42) 1.2199(24)
150 0.34193(78) 3.2599(59) 0.20930(45) 1.4210(32)
200 0.34973(79) 3.5278(74) 0.21672(47) 1.5679(39)
300 0.35893(85) 3.880(11) 0.22615(53) 1.7772(52)
400 0.36528(92) 4.182(12)  0.23208(56) 1.9220(57)
500 0.3684(11)  4.383(17)  0.23673(56) 2.0371(74)
700 0.3728(10)  4.692(21)  0.24115(59)  2.2220(99)

1000 0.3757(11) 5.051(31)  0.24329(59) 2.392(12)

1500 0.3776(12)  5.463(39) 0.24783(62) 2.654(18)

2000 0.3813(13) 5.695(45)  0.24970(65) 2.792(22)

3000 0.3831(11) — 0.25049(69) —
4000 0.3832(11) — 0.25246(70) —
5000 0.3835(11) — 0.25341(71) —
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